
Draft 08/28/00

Knowledge-based Automation of a Design Method for
Concurrent Systems

Kevin L. Mills
National Institute of Standards and Technology, Gaithersburg, Maryland 20899 USA

Hassan Gomaa
George Mason University, Fairfax, Virginia 22030 USA

Abstract. This paper describes a knowledge-based approach to automate a software
design method for concurrent systems. The approach uses multiple paradigms to
represent knowledge embedded in the design method. Semantic data modeling provides
the means to represent concepts from a behavioral modeling technique, called Concurrent
Object-Based Real-time Analysis (COBRA), which defines system behavior using
data/control flow diagrams. Entity-Relationship modeling is used to represent a design
meta-model based on a design method, called COncurrent Design Approach for Real-
Time Systems (CODARTS), which represents concurrent designs as software
architecture diagrams, task behavior specifications, and module specifications.
Production rules provide the mechanism for codifying a set of CODARTS heuristics that
can generate concurrent designs based on semantic concepts included in COBRA
behavioral models and on entities and relationships included in CODARTS design meta-
models. Together, the semantic data model, the entity-relationship model, and the
production rules, when encoded using an expert-system shell, compose CODA, an
automated designer's assistant. Other forms of automated reasoning, such as knowledge-
based queries, can be used to check the correctness and completeness of generated
designs with respect to properties defined in the CODARTS design meta-model. CODA
is applied to generate ten concurrent designs for four real-time problems. The paper
reports the degree of automation achieved by CODA. The paper also evaluates the quality
of generated designs by comparing the similarity between designs produced by CODA
and human designs reported in the literature for the same problems. In addition, the paper
compares CODA with four other approaches used to automate software design methods.

Keywords: automated software engineering; knowledge-based software engineering;
software design; concurrent and real-time system design

Draft 08/28/00

 1

1. Introduction

Software engineering researchers and practitioners strive to improve the quality of
software products by increasing the discipline used during software development. One
means of increasing discipline entails the development and application of software design
methods and supporting notations. Some researchers attempt to enhance the utility of
software design methods by providing automated support. To date, such attempts rely
upon either of two approaches: clustering algorithms or rule-based expert systems.
Richer knowledge engineering models, integrating semantic data modeling with
production rules, can potentially lead to more effective automation of software design
methods. This paper describes and evaluates one such approach to automating a software
design method.

Unlike previous approaches to design automation, the approach described and
evaluated in this paper develops and exploits an underlying meta-model that can
represent and reason about instances of requirements models, design models, and the
relationships between the two. As a result, the approach described in this paper can check
instances of designs for consistency and completeness against the meta-model, can track
traceability between the requirements model and the evolving design model, can
automatically capture design rationale, can take different design decisions depending on
whether interacting with a novice or experienced designer, and can vary the generated
design to account for general design guidelines or to account for differences in target
implementation environment.

Beyond its novel aspects, the design automation approach also fares quite well when
considering its performance in two ways: (1) degree of automation and (2) quality of
designs. The automated design mechanism consists of two main phases: model analysis
and design generation. The model analysis phase aims to classify all symbols on a
requirements model (represented with data/control flow diagrams), and to assign
semantic tags to those symbols. For the models analyzed, 86% of the elements were
classified without help from the designer. Further information about the intent,
construction, and performance of the model analyzer can be found elsewhere [22]. The
automated design generator is the main topic of the current paper. Of 1,571 design
decisions required to generate ten concurrent designs, the design generator made 1,527,
or 97%, without human assistance. Further, the quality of the generated designs was quite
good, when compared against designs generated by human designers and documented in
the literature.

After describing in Section 2 the motivation for design automation research, the paper
discusses in Section 3 some previous approaches to automate software design. In Section
4, the paper briefly introduces CODARTS (COncurrent Design Approach for Real-Time
Systems), a software design method for concurrent and real-time systems, and then in
Section 5 proposes a knowledge-based approach to automate CODARTS. The proposed
approach leads directly to CODA (COncurrent Designer's Assistant), an automated
designer's assistant. In a fragment from a case study, presented in Section 6, the paper
describes the use of CODA to generate a design for an automobile cruise-control
subsystem. Following the case study, the paper evaluates in Section 7 the performance of
CODA when used to generate ten different concurrent designs for four real-time
problems. In Section 8, the paper discusses the contributions of CODA, as compared

Draft 08/28/00

 2

with some previous approaches to automate software design methods. Section 9 considers
future research.

2. Benefits from Automating Software Design Methods

A software design method provides a methodical, consistent, and teachable approach that
defines what decisions a designer needs to make, when to make them, and, importantly,
when to stop making decisions [1]. In addition, a software design method provides a
consistent notation that can improve communication among those who must review and
understand the meaning of a design. In effect, a software design method encodes
knowledge about good design practices into a form that designers can use to construct
software designs. For these reasons, numerous software design methods have been
proposed and practiced [2-15].

Using automated support for software design methods can lead to several benefits.
First, automation can improve the rigor with which a software design method is applied.
Automation can ensure that a designer does not overlook any of the myriad details
associated with the design process. Automation can establish that constraints levied on a
design are satisfied, or that any unsatisfied constraints are brought to the designer's
attention. Second, automation can improve a designer's ability to generate alternate
designs. Since automation can speed up the generation of designs without sacrificing
rigor, a designer can more readily produce several designs from one problem model.
Third, automation can reduce the variability among the types of designs generated by
various designers. Reduced variability of form can increase the ability of customers,
analysts, and programmers to understand and compare designs. Fourth, automation can
improve the performance of inexperienced designers both immediately, by making
default decisions, and gradually, by explaining default design decisions to the designer.
The work described in this paper was motivated by the desire to produce an automated
design assistant that would realize these benefits, while also advancing the state-of-the-art
in automated design systems.

3. Previous Work on Automating Software Development

A number of researchers have proposed approaches to automate software
development. The field exhibits a long history of attempts to automatically generate
operational programs from requirements specifications. Much of that work failed to
achieve the difficult goals envisioned. Realizing the difficulty of automated software
generation, several researchers turned to the application of artificial intelligence
techniques to provide automated assistance for the software design phases alone. Some
researchers aimed at high-level design, while others focused on detailed design. Most of
this work was disconnected from any particular software design methods that human
designers applied, and so the results have met with little success. Learning from these
failures, some researchers have attempted to provide automated support for specific
design methods with which human designers are already familiar. The work described in
this paper can be classified in this latter category. The sections that follow provide a brief
review of related research, discussed in three categories: (1) automatic programming, (2)
automating software design, and (3) automating software design methods.

Draft 08/28/00

 3

3.1 Automatic Programming. Unlike automated, design assistants, which help a
human analyst complete a single, if essential, transformation in the software development
process, automatic-programming systems [34-38] attempt to perform, without human
intervention, every transformation required to generate a working implementation from
an initial specification of user requirements. A different form of automatic programming,
end-user programming, enables a computer-naive user to interact with an intelligent agent
to select, exercise, evaluate, and modify an application program. End-user programming
[39] requires no formal specification of requirements; in fact, the user need only bring the
ideas in his head to a computer terminal to begin the process.

Numerous problems block success with automatic programming. Many automatic
programming research projects seem to be limited to a single, small domain. Even in
such projects the number and type of transformations required to convert a moderate
specification into a program can be enormous. In addition, the automatic generation
process produces a huge repository of data that can be difficult to manage. Further, the
knowledge contained in an automatic programming system is dispersed widely and, thus,
modifying such a system can be challenging. When an automatic programming system
produces incorrect results, end users tend to examine the target code for the cause of the
errors. Such an approach to software debugging, reminiscent of programmers who would
modify the object code produced by a faulty compiler, can be costly, risky, and
unproductive. Experience to date indicates that automatic programming will remain
confined, for the foreseeable future, to single, small application domains.

The end-user variant of automatic programming systems overcomes the limits of a
single, small domain, but at a cost. End-user programming systems require that a user
sort through a range of problem-solving strategies in an effort to determine which
approach might best meet his problem. After selecting an approach, the user must
interact with the program over a long period of time until the performance of the program
meets the user's expectations. As one possible outcome of this prolonged interaction, the
user or the system might realize that the initial problem-solving strategy was, in fact,
wrong. The basic approach to end-user programming seems to be educated guess,
followed by trial and error refinement. Few users have the patience for such an approach
to programming.

3.2 Automating Software Design. Designing software requires that a designer
possess both creativity and a capacity for complexity and detail. A number of researchers
investigate automated approaches to assist designers with the intricacies of software
design, without unduly restricting the creative aspects of the design process. Some
researchers address design at the architectural level, while others consider assistance for
detailed design. For example, Fickas' Critter [40], based on an earlier tool known as
Glitter [41], provides an automated assistant that attempts to bridge between requirements
and design for composite systems, those containing a mixture of human, hardware, and
software components. Critter uses an artificial intelligence paradigm of state-based
search, relying on a human user to provide the domain knowledge necessary to guide the
search. Critter encapsulates only domain-independent, design knowledge. Critter and a
human designer interact to develop a design to solve a domain-specific problem. To date,
the results with Critter do not appear encouraging. Critter's limited reasoning techniques
prevent its use on large software engineering problems; the analysis algorithms used in

Draft 08/28/00

 4

Critter prove too slow for an interactive design system; Critter's knowledge-base and
representation omit several classes of system design concepts.

Progress to date on automating detailed design does not look any better. A number of
other researchers investigated methods of providing automated assistance for detailed
design. Most such methods assume the existence of one or more architectural designs.
The assistance then focuses on locating and modifying, or on creating, components that
can be fitted into one of the existing architectures. In most cases, detail-design assistants
[42-46] operate in a narrow domain. Automated assistants of this type might be useful
once a designer has already developed a system architecture.

3.3 Automating Software Design Methods. Some researchers attempt to provide
automated support for familiar and well-established design methods. Four previous
approaches are described here. Three of the four approaches produce a sequential design,
represented as structure charts, from a behavioral model represented by data flow
diagrams (DFDs). The fourth approach produces a concurrent design that to be mapped
directly onto a design simulator. Each of these approaches is described below, followed
by a brief discussion of advances made by the research presented in this paper.

3.3.1 Cluster Analysis. A system called Computer-Aided Process Organization, or
CAPO, embodies one approach to transform a data flow diagram into a structured design
[16]. CAPO strives to free a designer from using structured design techniques, such as
transform and transaction analysis, to create structure charts. CAPO represents a data
flow diagram as a flow graph, and then converts that flow graph into six matrices, used to
compute an interdependency weight for the links joining each pair of transformations.
Based upon the computed weights, CAPO converts the flow graph into a weighted,
directed graph, and then uses a number of cluster analysis techniques to decompose that
directed graph into a set of non-overlapping subgraphs.

CAPO provides no automated traceability between the flow graph and the resulting
structure charts; such mapping must be determined by human inspection. CAPO also
provides no automated assistance for checking the completeness and consistency of the
proposed structure charts. In addition, CAPO does not capture the design rationale used
to propose the various structure charts. In fact, wide variations in proposed structure
charts can be obtained without changing the structure of the flow graphs by manipulating
various numbers assigned to elements of the input flow graph. CAPO generates alternate
designs by using various clustering algorithms but does not consider aspects of the target
environment that might suggest alternate designs.

3.3.2 Specification-Transformation Expert System. Tsai and Ridge [17] describe a
Specification-Transformation Expert System (STES) that automatically translates a
specification model (expressed as data flow diagrams) into a sequential design (expressed
as structure charts). The STES, implemented using the OPS5 expert-system shell,
encapsulates the Structured Design method of Yourdon and Constantine [15] in expert-
system rules. STES represents both data flow diagrams and structure charts as structured
facts. STES uses several textbook heuristics, including coupling, cohesion, fan-in, and
fan-out, to guide the design process. Each data flow in a data flow diagram has an
associated data dictionary entry that can be used by STES to gauge the degree of
coupling between modules in a structure chart. An expert system has difficulty
determining cohesion among functions, and so STES consults a user for information

Draft 08/28/00

 5

required to make inferences about functional cohesion. STES attempts to maximize fan-
in and tries to achieve a moderate span of control.

STES operates as a sequential set of phases. First, STES factors the data flow
diagram into afferent, efferent, and transform-centered branches. This factoring results in
a top-level design for the structure chart. Second, STES refines each module at the next
level of the structure chart using textbook guidelines for coupling, cohesion, fan-in, and
fan-out. Third, STES renders the resulting, multilevel, structure chart using a CASE
system from Cadre Technologies.

The approach embodied in STES limits its application to small designs, amenable to
the sequential processing paradigm known as "inputs-processing-outputs". In addition,
the STES provides no automated checking for completeness and consistency of the
generated structure chart. Traceability between the data flow diagram and the structure
chart must be verified manually. STES does not capture the rationale for design
decisions. Though consulting the designer at various times, STES does not temper the
nature of such consultation based on the designer's level of experience. STES cannot
generate alternate designs without changing the data flow diagram.

3.3.3. Formal Rule Rewriting. Boloix, Sorenson, and Tremblay [18] describe another
approach, based on an entity-aggregate-relationship-attribute (EARA) model, to
automatically transform data flow diagrams to structure charts. Here, transformation
rules, based on set theory, convert data flow diagrams, described formally at the lowest
level of decomposition using an EARA model, into a formal description of structure
charts. A human analyst then improves the resulting structure charts.

The EARA approach provides no automated completeness and consistency checking
for the generated structure charts. In addition, the approach fails to capture the rationale
used to generate the structure charts. Nor does the approach give consideration to
generating alternate designs based upon variations in the intended run-time environment
for the system under design. When consulting the designer at numerous points in the
design-generation process, the EARA method does not vary the scope and nature of this
elicitation based on the designer's level of experience.

3.3.4 SARA Design Apprentice. Another approach, reported in the literature by Lor
and Berry [19], transforms requirements into a design, but without using structure charts
as the target. This semi-automated, knowledge-based approach, developed by Lor as the
subject of a Ph.D. dissertation in the context of the System ARchitects Apprentice
(SARA), a joint development of researchers at UCLA and the University of Wisconsin
[47], builds on the SARA environment by providing automated assistance to help a
designer transform a requirements specification into a SARA structural model and graph
model of behavior, or GMB. Lor uses data flow diagrams and system verification
diagrams to specify requirements. System verification diagrams provide a stimulus-
response model of behavior that Lor uses to specify interactions among subsystems in a
design. Lor uses data flow diagrams mainly to specify the interior of subsystems.

Lor chose a rule-based approach for his design assistant for two reasons. First, since
the current set of rules for transforming requirements into SARA designs remains
incomplete, locking the knowledge into a procedural program appears premature.
Second, the sequence of rule firings provides a natural explanation facility for design
choices. The design assistant encompasses 21 rules for building the structural model, 59
for synthesizing the control domain, and 37 for modeling the data domain. Lor's

Draft 08/28/00

 6

approach synthesizes a SARA structural model through a direct translation of the
hierarchy of data flow diagrams; at the lowest level of decomposition, the data flows map
to SARA domain primitives. Lor's approach also creates a SARA GMB from the
stimulus-response model provided by the system verification diagrams, as well as from
the data flow diagrams.

Lor reports that his research provides a better understanding of, and a methodical
approach to, designing systems in the SARA environment. The rules encapsulated in the
design assistant can be called syntactically complete because every requirements
construct is covered. The rules cannot, however, be called semantically complete;
alternative designs cannot be considered and the rules cannot always map each
requirements element to the most concise design construct. A human designer must
answer queries as the design progresses (to provide needed information and to indicate
preferences), and must improve the generated design. Given the same requirements
specification technique (i.e., system verification diagrams and data flow diagrams), Lor
asserts that his approach could be adapted to other design representations by rewriting the
rule consequents; however, since the most crucial step in Lor's approach entails
developing formal definitions, represented by SARA design constructs, for every
construct in his requirements language, adapting to another design representation would
require that this most crucial step be repeated.

3.3.5 Advances Over Previous Approaches. The work described in this paper provides
several advances over the previous, related research. First, the current work provides an
underlying meta-model that describes components, relationships, and constraints that
designs must satisfy. This allows automated checking of design instances for
completeness and consistency with respect to the meta-model. Such checking enables
errors that can easily be made by human designers to be uncovered. Of course, the
automated design generator included in the approach generates designs that should
readily pass the completeness and consistency checks. Second, the current work provides
automatic capture of design rationale. This allows a human designer to understand how a
design decision was made. Such rationale can be used when an experienced designer
changes a design, or when an inexperienced designer is learning the design method.
Third, the current work provides two modes of operation: experienced and inexperienced.
In experienced mode, the design generator will elicit information and assistance from the
designer, as needed to address various subtleties in an evolving design, or to seek
additional information that can help to resolve ambiguities or to provide a better design.
In the inexperienced mode, the design generator uses default assumptions to address
subtleties, to resolve ambiguities, and to make decisions about design optimizations.
Finally, the current work enables the generation of designs that depend on characteristics
of the target hardware and operating system. Using this feature, a designer can generate
design variations more suited to particular target environments. A more detailed
comparison between the current work and these previous approaches is given in Section
8, Discussion.

4. CODARTS: A Software Design Method for Real-time Systems

CODARTS, or COncurrent Design Approach for Real-Time Systems, is a software
design method for concurrent and real-time systems. CODARTS [7] uses criteria for
information hiding and task structuring to form a concurrent design, including both tasks

Draft 08/28/00

 7

and information-hiding modules, [20] from a behavioral specification. CODARTS
begins by using COBRA (Concurrent Object-Based Real-time Analysis) to analyze and
model a system under design. COBRA uses RTSA (Real-Time Structured Analysis)
notation, as summarized in Figure 1. However, COBRA provides an alternative to the
RTSA [8,14] decomposition strategy that includes guidelines for developing an
environmental model based on the system context diagram, and defines structuring
criteria for decomposing a system into subsystems and for determining objects and
functions in each subsystem. Finally, COBRA includes a behavioral approach, based on
event sequencing scenarios, for determining how the objects and functions within a
subsystem interact. A COBRA specification is documented as a hierarchical data/control
flow diagram (D/CFD) and a data dictionary. A D/CFD has a state-transition diagram for
each control transformation and a mini-specification for each data transformation. Figure
15 shows a fragment of a COBRA D/CFD for an automobile cruise-control application.

Once a COBRA specification exists, CODARTS provides four steps for generating a
concurrent design: (1) Task Structuring, (2) Task Interface Definition, (3) Module
Structuring, and (4) Task and Module Integration. First, CODARTS task structuring

criteria assist a designer in
examining a COBRA
specification to identify
concurrent tasks. The task
structuring criteria,
consisting of a set of
heuristics derived from
experience obtained in the
design of concurrent
systems, can be grouped into
four categories: input/output
task structuring criteria,
internal task structuring
criteria, task cohesion
criteria, and task priority
criteria. In a given design, a
task may exhibit several
criteria and many tasks may
exhibit the same criteria.

The input/output and
internal task structuring criteria help to identify tasks based upon how and when a task is
activated: periodically, based on the need to poll a device or to perform a calculation, or
asynchronously, based on an external device interrupt or on an internal event. The task
cohesion criteria help a designer to identify COBRA objects and functions that can be
combined together in the same task. Single tasks might be formed wherever a set of
transformations must be performed sequentially (sequential cohesion). When a set of
tasks can be executed with the same period or with a harmonic period, those tasks might
also be combined (temporal cohesion). When a set of transformations performs closely
related functions, those transformations might be included in the same task (functional

Data
Transformation

 Control
Transformation

Terminator

Data
Store

Data
Flow

Event
Flow

Two-Way
Data Flow

Figure 1. Syntactic Elements for Composing COBRA
Data/control Flow Diagrams

Draft 08/28/00

 8

cohesion). The task priority criteria prevent a designer from combining tasks that might
need to execute at substantially differing priorities.

As a second step, CODARTS provides guidelines for defining interfaces between
tasks. Once tasks are defined, data and event flows from a COBRA specification can be
mapped to inter-task signals or to tightly or loosely coupled messages, depending on the
synchronization requirements between specific pairs of tasks.

As a third step, CODARTS includes criteria, based on information hiding, to help a
designer identify modules from the objects and functions in a COBRA specification. In
general, the CODARTS module structuring criteria form modules to hide the details of
device characteristics, data structures, state-transition diagrams, and algorithms.

Finally, once both the task and module views of a concurrent design exist,
CODARTS provides guidelines to help a designer combine the independent views into a
single, consistent design. Each task represents a separate thread of control, activated by

some event: an interrupt, a timer, an
internal signal, or a message arrival.
Each module provides operations
that can be accessed by the tasks in
a design. CODARTS helps a
designer establish the control flow
from events to tasks and then on to
operations within modules.

The results of applying
CODARTS are documented in the
form of a software architecture
diagram, and an accompanying set
of task and module specifications.
Some of the key icons in the
graphical notation are illustrated in
Figure 2. The contents of the task
and module specifications are
discussed elsewhere [11]. Figure 16
gives an example of a CODARTS
design corresponding to the
COBRA requirements model shown
in Figure 15.

5. Automating CODARTS

CODARTS provides design-

structuring criteria to help a designer in structuring a software system into components.
These criteria, expressed as heuristics or guidelines, are based on real-world experience
in designing concurrent and real-time systems, and have evolved over several refinements
of the design method [30, g86, ga89, 7]. Furthermore, the criteria have been validated
through widespread use on industrial projects [cg91]. As the CODARTS structuring
criteria are aimed at a human designer, they are described textually in considerable detail
with the aid of examples [7]. A key challenge for automating CODARTS was to codify
these natural language heuristics as production rules that could be processed by a

a. Task

b. Queue and Queued Message

c. Tightly Coupled Message

d. Tightly Coupled Message with Reply

e. Event (i.e., interrupt, timer expiration, or
 software signal)

f. Data or Operation Invocation

g. Information Hiding Module
with four Operations

Figure 2. Some Key Icons from the CODARTS
Graphical Notation

Draft 08/28/00

 9

machine, capturing all the different cases, and subtleties, addressed by the heuristics.
Once codified, and encoded using an expert system shell, this design knowledge forms
the basis for CODA, an automated assistant for designers of concurrent and real-time
systems. The following discussion explains the ideas underlying CODA.

5.1 Overview of CODA. Figure 3 illustrates one view of the architecture for
CODA. Given a data/control flow diagram and a description of the intended target
environment, along with any design guidelines, CODA largely automates the process of
generating a concurrent design. The resulting design consists of a software architecture
diagram, initial specifications for tasks and for information hiding modules, and
consistency and completeness analyses of the generated design. Conceptually, CODA
consists of two main components: a model analyzer and a design generator. The model
analyzer converts a syntactically described flow diagram into a flow diagram annotated
with semantic concepts from COBRA (see Figure 15 for an example of an annotated flow
diagram). The model analyzer consists of four knowledge bases: (1) an analysis meta-
model that describes relationships among semantic concepts within a specific analysis
method, (2) concept classification rules that perform inferences on instances of semantic
concepts within the analysis meta-model, (3) axioms that define relationships required
and prohibited among semantic concepts in the analysis meta-model, and (4) information
elicitation rules that can be used to obtain information not readily available from visual
representations of the analysis meta-model. For CODA to support a specific analysis
method, these four knowledge bases must be created. In the work discussed in this paper,
knowledge bases were built to support Concurrent Object-Based Real-time Analysis, or
COBRA [7]. The model analyzer, discussed in detail elsewhere [21-22], is described
briefly in Section 5.2.

The design generator uses design knowledge from CODARTS to transform an
annotated flow diagram into a concurrent design. The current paper focuses on the
design generator, highlighted in Figure 3, which consists of a design meta-model that
encodes the entities, attributes, and relationships available to construct instances of
CODARTS designs, and three knowledge bases that encode CODARTS design
heuristics, process constraints, and consistency and completeness constraints,
respectively. Section 5.3 describes the CODARTS design meta-model, the related
consistency and completeness constraints, and the characteristics of target environments,
as seen by CODA. Section 5.4 explains how CODARTS heuristics can be represented as
rule sets. Section 5.5 discusses how constraints from the CODARTS meta-model can be
represented as predicates, and how those predicates can be encoded as object-oriented
queries that can be applied to instances of CODARTS designs. Section 5.6 gives a brief
explanation of the techniques used to capture and access design rationale.

5.2 The CODA Model Analyzer. The starting point for CODA consists of a
data/control flow diagram represented using the syntactic elements of RTSA, as
illustrated in Figure 1. Before the CODA design generator can apply CODARTS
heuristics, the model analyzer, working together with the designer where necessary, must
classify the syntactical elements from RTSA flow diagrams as semantic concepts in
COBRA. To accomplish this task, the model analyzer depends upon a COBRA meta-
model, a concept classifier and axiom checker, and an information elicitor.

The COBRA meta-model, described elsewhere [21], comprises a taxonomy of
semantic concepts [23-24]. Each concept in the taxonomy can be constrained by a set of

D
raft 08/28/00

10

axiom
s [25]. Each leaf-level concept in the taxonom

y m
ust satisfy all axiom

s defined for
the interm

ediate concepts along all its inheritance paths to the top of the taxonom
y.

SOFTWARE ARCHITECTURE
DIAGRAM

UNDERSTANDING THE PROBLEM MODEL

Design
Analyses

MODEL ANALYZER

Data Flow Diagram/
Control Flow Diagram

(DFD/CFD)

Task
Behavior

Specification

Information
Hiding Module
Specification

COBRA Meta-Model

Concept Classifier

Axiom Checker

Information Elicitor

ANNOTATED DFD / CFD

CODARTS Design Meta-Model

Design-Generation Knowledge

Design-Process Knowledge

Design-Checking Knowledge

DESIGN GENERATOR

Target
Environment &

Design
Guidelines

GENERATING THE CONCURRENT DESIGN

DESIGNER
INTERACTIONS

See Figure 16 for an
Example Software

Architecture Diagram

See Figure 15 for an
Example DFD/CFD

[Annotations in Square
Brackets]

Figure 3. C

onceptual A
rchitecture for C

oncurrent D
esigner’s A

ssistant, C
O

D
A

Draft 08/28/00

 11

The actual classification of concepts on the flow diagram occurs through use of an
automated concept classifier [26]. The concept classifier developed for CODA consists
of a four-stage inference network [27], illustrated in Figure 4. The classifier examines
RTSA syntactic elements and classifies each as a concept in the COBRA taxonomy.
Figure 4 identifies the 36 leaf-level concepts in the COBRA taxonomy. Where ambiguity
exists during classification, the concept classifier consults the designer. Where the
designer cannot resolve the ambiguity, the concept classifier makes default decisions that
have been encoded in the classification rules as the most likely outcome in the particular
situation. To verify the work of the concept classifier, an axiom checker can ensure that
every RTSA element is properly classified as one of the 36 COBRA semantic concepts
shown in Figure 4, and can ensure that each concept satisfies all required axioms.

The final component of the model analyzer elicits information from the designer,
where such information cannot be derived directly from a flow diagram. In addition,
newly classified concepts might require additional information in order to make
subsequent design decisions. For example, if a control flow is classified as a timer, a
positive period must be supplied for the timer. The information elicitor automatically
identifies when additional information is necessary, prompts the designer for the

Arc
Classification

Transformation
Classification

Stimulus-
Response

Classification

Ambiguous-
Function

Classification

Terminator
Data Store

Data Transformation

Two-Way Data Flow

Control Transformation

Data Flow

Event Flow

Unclassified
Concepts

Unclassified
Concepts

Unclassified
Concepts

Terminators
Device

External Subsystem
User Role

Data Flows
Input

Output
Store

Retrieve
Update

Event Flows
Interrupt
Signal
Trigger
Enable
Disable
Timer

Objects
Control Object

User-Role Interface Object
Subsystem Interface Object

Data Flows
Stimulus

Response

Functions
Asynchronous Function
Synchronous Function

Triggered Asynchronous Function
Triggered Synchronous Function

Terminator
Classifications

Stimulus/Response
Selections

Function
Information

Designer DesignerDesigner

RTSA
Syntactic
Elements

COBRA
Semantic
Concepts

Stage One
Classifications

Stage Two
Classifications

Stage Three
Classifications

Stage Four
Classifications

Functions
Periodic Function

Triggered Periodic Function
Enabled Periodic Function

Enabled Asynchronous Function
Objects

Periodic Device Input Object
Asynchronous Device Input Object

Passive Device Input Object
Periodic Device Output Object

Asynchronous Device Output Object
Passive Device Output Object

Periodic Device IO Object
Asynchronous Device IO Object

Passive Device IO Object

Figure 4. An Automated Classifier for COBRA Semantic Concepts

Draft 08/28/00

 12

information, and performs consistency checks on the information supplied. Figure 15
illustrates the output of the COBRA model analyzer for a fragment of a D/CFD for an
automobile cruise-control system.

5.3 The CODARTS Design Meta-Model. The CODARTS design meta-model
provides a basis for describing concurrent designs and for reasoning about those designs
using automated methods. The design meta-model also provides for traceability between
concurrent designs and elements of the data/control flow diagrams from which the design
is generated. In addition, the design meta-model allows design decisions and associated
rationale to be captured and organized automatically.

The CODARTS design meta-model consists of entities, attributes, relationships,
and constraints. The entities, attributes, and relationships can be visualized conveniently
using an Entity-Relationship (ER) diagram. The constraints cannot be shown in a visually
appealing form. One class of constraints restricts the possible mappings between
elements from a COBRA behavioral model and elements in a corresponding concurrent
design. The second class of constraints defines restrictions among relationships in a
concurrent design. These constraints permit instances of a design to be checked for
consistency and completeness.

Figure 5 illustrates the entities and associated attributes that compose the meta-
model for concurrent designs. The figure also shows some inheritance relationships
among those entities, and depicts two key relationships in which all design entities
participate. Every entity in the design meta-model is a named design element that
possesses a unique object identifier within a given design. Each design element can track
every decision made about it; thus, CODA captures design rationale, including the name

of the rule (see Section 5.4)
that executed the decision and
the specific actions taken to
update the design. In
addition, each design element
must trace from one (or more)
specification element in a
COBRA meta-model;
however, certain constraints,
given in Table 1, restrict this
relationship to those that
make sense. The remaining
entities in Figure 5 depict the
semantic elements used in
CODARTS to describe
concurrent designs. In
general, CODARTS designs
consist of three types of
entities: (1) repeatable design
elements, (2) directed design
elements, and (3) auxiliary
design elements. Repeatable
design elements include the

Figure 5. E-R Model of Design Entities Composing the
CODARTS Design Meta-Model

Design ElementTraces
To/From

Specification
Element Tracks

name object
identifier

IS-APriority Queue

Queue

Repeatable Design
Element

Directed Design
Element

Parameter

Operation

IS-AIS-A

Task

IHM Data

Tightly-Coupled
Message

Message

IS-A

Event

Queued Message

cardinality

type

type

periods

priority

priority

instance

from

to

processor

type

interval

rule name

Decision

action

rationale

N N
N1

priority

Message
Data

Draft 08/28/00

 13

main structural elements of a concurrent design: tasks and information-hiding modules.
Directed design elements link together the structural components of a design. For
example, messages are sent between tasks. Two types of messages can be exchanged
between tasks: (1) queued messages and (2) tightly coupled messages.

Table 1. Constraints on Traceability from COBRA Behavioral Models to Concurrent

Designs

Design Element Traces from COBRA Semantic Concept(s)
Task Control or Data Transformation
Information Hiding Module Data Store, Data Flow, Control or Data Transformation,

Two-Way Data Flow
Queue or Priority Queue Signal, Stimulus, Control or Data Transformation
Message or Message Data Control Event Flow, Internal Data Flow, Signal
Event Control Event Flow, Normally-Named Event Flow
Data External Data Flow
Operation Data-Store Data Flow, External Data Flow, Interrupt,

Transformation, Update
Parameter Control Event Flow, Data Store, External Data Flow,

Internal Data Flow, Signal

The "Tracks" and "Traces" relationships depicted in Figure 5 apply to every
design element. The "Tracks" relationship enables a history of design decisions to be
associated with each element in a design. Similarly, the "Traces" relationship enables
each design element to be associated with the flow-diagram symbols from which the
element is derived. Other semantic relationships between design elements are depicted
using a separate E-R diagram, shown as Figure 6. Entities with the same name on both
Figure 5 and Figure 6 represent the same design element, so the two E-R diagrams can be
understood as two different views of a more complex model. Each relationship in Figure
6 should be understood to be bi-directional, including both the relationship as shown and
its inverse. For the most part, the relationships shown in Figure 6 can be read intuitively.

Consider the relationships between Task and Message, as depicted on Figure 6. A
Task can send and receive many messages, and each message must be sent and received
by one Task. Further, a message may include Message Data, which carries information
between tasks. Messages may be of two types, a Queued Message, which can be sent
without causing the sending Task to block, or a Tightly Coupled Message, which causes
the sending Task to block until the receiving Task accepts the message. Some messages
require a reply, as depicted by the Answers relationship. Note that a Tightly Coupled
Message answers a message; thus, all replies cause the sending Task to block until the
receiving Task has accepted the reply.

While Figure 6 does depict cardinality constraints, more complex constraints do
not appear on the E-R diagram. For example, each module in a given design is either
contained in a task or is accessed by a task or another module. Such complex constraints
are represented as predicates that must hold for valid instances of the design meta-model.
These predicates, when expressed as knowledge-based queries, provide the design

Draft 08/28/00

 14

generator with the knowledge needed to check designs for consistency and completeness
with respect to the design meta-model.

While many design decisions can be taken in the abstract, depending only on
concepts represented in the design meta-model, other design decisions must account for
specific characteristics of the target environment in which the design will execute. To
account for such characteristics, CODA enables the designer to specify, for instance, the
number of processors involved in a system, the type of inter-process communications
mechanisms available, and the number of available task priority levels.

Figure 6. E-R Model of Design Relationships Composing the CODARTS Design Meta-
Model

IHM

Serves

Operation

Task

Parameter

Message

Provides

Requires

AccessesContains

Alters

Yields

Takes

Invokes

Includes

Sends

Receives

IS-A

Queued Message Tightly-Coupled
Message

Answers
Queue

Holds

Consumes

Priority Queue

Data

Event

Heads

Owns

Generates Accepts

Reads

Writes

1N

0 or 1

N
N, N > 0

N

N

N

NN

1

N

N

1

1

N
N

1
1

NN

N

1 1 1

N

1 N, N > 1 1

N

0 or 1

1

1 N

N

N

1

1
1

N

N

N

Encapsulates

Encloses

11

0 or 1
0 or 1

Message
Data

Draft 08/28/00

 15

5.4 Design Generation Knowledge. Using the semantic concepts represented in the
COBRA meta-model and the CODARTS design meta-model, along with some
characteristics of the intended target environment, a human designer can apply various
heuristics from the CODARTS design method to produce a concurrent design from a
COBRA behavioral model. To automate design generation, heuristics from CODARTS
must be formulated as expert-system rules [28] that can reason about data/control flow
diagrams and evolving concurrent designs. The specific rules contained in CODA were
developed from a natural language description of CODARTS design heuristics [7]. Since
the requirements meta-model and the design meta-model were constructed from concepts
contained in COBRA and CODARTS, the CODA rules can express CODARTS
heuristics in terms relatively familiar to a human designer. Each rule consists of an if-
then construction, where the antecedent matches a pattern of concepts in the annotated
flow diagram, entities and relationships in the evolving design, or some combination.
Many rules proved to be very simple with only a single predicate in the antecedent. In
some rules, a conjunction of as many as ten predicates was required to correctly specify
the antecedent. Some complexity also arose associated with guiding the firing order when
multiple rules might be satisfied simultaneously. To address these situations, a careful
analysis of the CODARTS design process, as applied by human designers, identified
which design criteria should take precedence over other criteria. This knowledge was
encoded as six precedence levels. Each of the 126 design-generation rules was assigned
one of the six levels. By comparing the designs produced by CODA against designs
produced by human designers, as reported in the literature, the expert system rules were
tested for validity. Where differences appeared between the designs generated by CODA
and the designs reported in the literature, the reasons for the differences were identified
and analyzed. Section 7.3 provides more detail related to this validation.

The expert system rules that formalized the CODARTS design heuristics were
encoded as a partitioned repository of design-generation knowledge that the CODA
design generator uses to transform flow diagrams into designs. Each knowledge partition
corresponds to a step in the CODARTS design method: (1) Task Structuring, (2) Task-
Interface Definition, (3) Information-Hiding Module Structuring, and (4) Task and
Module Integration. The execution of these four knowledge partitions must meet the
process constraints imposed by the CODARTS design method. Task Structuring and
Module Structuring are independent activities that must both be completed prior to
integrating the task and module views. Task Structuring must be completed prior to
defining the interfaces between tasks. A more detailed discussion follows for each
knowledge partition.

5.4.1 Task Structuring Knowledge. Task structuring knowledge, as encoded for use
by the CODA design generator, consists of a sequence of four decision-making
processes: (1) identify candidate tasks, (2) allocate remaining transformations to tasks,
(3) consider task mergers, and (4) consider resource monitors. Each of these processes
consists of a set of production rules that search the flow diagram and the emerging design
for matching patterns. When a matching pattern is found, the associated rule is activated,
updating the emerging design according to actions specified in the rule. The first
decision-making process, consisting of 11 rules, applies CODARTS heuristics to identify
those transformations that can be allocated to input/output tasks and to internal tasks.
The second process, encompassing nine rules, applies selected CODARTS cohesion

Draft 08/28/00

 16

criteria to allocate each of the remaining transformations to one or more of the tasks
identified during the first process. The third process, comprising eight rules, examines
the tentative task structure, applying additional CODARTS cohesion criteria to reduce the
number of tasks by merging tasks where appropriate. The final process, requiring only
two rules, identifies instances where a resource monitor task is needed to arbitrate access
by multiple tasks to a single device. A few examples, taken from a case study presented
in Section 5, will illustrate how CODARTS task structuring knowledge can be
represented as production rules.

Figure 7 shows how a transformation in a flow diagram model leads to the
generation of an input/output task. Figure 7 (a) shows a transformation, Cruise Control
Lever, activated by an interrupt. During preprocessing by the CODA model analyzer,
Cruise Control Lever was classified as an "Asynchronous Device Input Object". Since
such an object inherits the characteristics of an "Asynchronous Device Interface Object",
Cruise Control Lever satisfies the antecedent of the rule shown in Figure 7 (c). As a
consequence of this rule, Figure 7 (b) shows that an asynchronous-device input task, [task
A], is created and that a traceability link, [Traces], is established between the new task
and the transformation. Not shown in Figure 7, the decision and rationale are noted and
added to the design history for the new task. Using the rule
shown in Figure 7 (c) and two similar rules, the CODA design generator can identify all
transformations that lead to CODARTS input/output tasks. Eight additional rules are

Cruise
Control
Lever
1.1.4

Cruise
Control
Input
Lever

Interrupt

Cruise
Control

Requests

Cruise
Control
Lever

Input Task

if
transformation T is an Asynchronous Device Interface Object

then
if transformation T is an Asynchronous Device Input Object
then create an asynchronous device-input task A
elseif transformation T is an Asynchronous Device Output Object
then create an asynchronous device-ouput task A
else create an asynchronous device-input/ouput task A
fi
record the decision and rationale in the design history for task A
denote the traceability between the transformation T and task A

fi

[transformation T] [task A]

[Traces]

(a) Flow Diagram Fragment (b) CODARTS Design Fragment

(c) Task Structuring Rule - Asynchronous Device Interface

Figure 7. Heuristic for Generating an Input/Output Task

Draft 08/28/00

 17

required to apply CODARTS criteria for structuring internal tasks.
Figure 8 describes one of the rules encoding the CODARTS criteria for identifying

internal tasks. Figure 8 (a) shows a transformation, Maintain Speed, which was
previously classified by the CODA model analyzer as an "Enabled Periodic Function".
The rule defined in Figure 8 (c), matches transformations that are enabled and disabled
by a control object and that execute periodically when enabled. The rule in Figure 8 (c)
creates a task, shown as a design fragment in Figure 8 (b), and links that task to the

appropriate transformation from the flow diagram model.
Figure 9 illustrates how two CODARTS criteria, functional cohesion and temporal

cohesion, can be combined into a single rule that can merge tasks. When periodic tasks
of identical type (functional cohesion) exhibit identical execution intervals (temporal
cohesion) and each of those tasks represents a single instance, the tasks can be merged
into one task. Figure 9 (c) specifies the rule that recognizes when tasks can be merged.
Before the rule execution, Figure 9 (a), the design consists of two periodic device-input
tasks, each of which executes every 100 milliseconds. After the rule execution, Figure 9
(b), these tasks have been merged to form a single task.

 5.4.2 Task-Interface Definition Knowledge. After determining the tasks in a
concurrent design, the CODA design generator can identify the subset of data and event
flows exchanged among the tasks and can then map those flows to specific
communication mechanisms between pairs of tasks. The CODARTS design method
provides guidelines for selecting appropriate interface mechanisms. These guidelines can
be represented as production rules encoded within five decision-making processes: (1)
allocate external interfaces, (2) allocate control and event flows, (3) allocate data flows,

Maintain
Speed

1.1.1.4

Enable

Disable
Speed
Timer

Maintain
Speed
Task

if
transformation T is an Enabled Periodic Function

then
create an enabled periodic task P
record the decision and rationale in the design history for task P
denote the traceability between transformation T and task P

fi

[transformation T] [task P]

[Traces]

(a) Flow Diagram Fragment (b) CODARTS Design Fragment

(c) Task Structuring Rule - Enabled Periodic Algorithm

Current
Speed

Desired
 Speed

Throttle
Value

Figure 8. Rule for Generating an Internal Task

Draft 08/28/00

 18

(4) elicit message priorities, and (5) allocate queue interfaces. The first process,
consisting of five rules, creates the timer and interrupt events needed to activate particular
tasks, maps data flows between tasks and devices into appropriate input and output data,
and identifies the data and event flows exchanged between tasks. The second process,
requiring eight rules, decides how to allocate event flows and control flows that are
exchanged between tasks. Such flows can be allocated to software interrupts, to tightly
coupled messages, or to queued messages. The third process uses 12 rules to map data
flows onto either tightly coupled messages or queued messages. The fourth process has
one rule that allows an experienced designer to indicate the relative priority of multiple
messages arriving at specific tasks. The final process decides upon appropriate interfaces
to receive queued messages. Such decisions depend upon the type of mechanisms
available in the target environment and upon the priorities assigned when multiple
queued messages arrive at a single task. Some examples will show how the CODARTS

guidelines can be encoded as production rules.
Figure 10 illustrates one rule for mapping an event flow onto a queued message

exchanged between two tasks. The rule, defined in Figure 10 (c), recognizes the case
where an event flows from a device-input object in one task to a control object in another
task. In such cases, provided that the control object is not locked in one state awaiting
the incoming event, the event flow can be mapped onto a queued message that is sent by
the device-input task and received by the control task. One such case is shown in Figure
10 (a), where a periodic device-input task, Monitor Auto Sensors, traces to a periodic
device-input object, Engine, that sends an event flow, Engine Off, to a control object,
Cruise Control, that traces to a control task of the same name. After the execution of the
rule given in Figure 10 (c), the CODA design generator updates the design fragment, as
illustrated in Figure 10 (b), to include a new queued message, Sensor Status Message,

Figure 9. Rule Applying Functional and Temporal Cohesion to Merge Two Tasks

text

if
task T1 is a periodic device-input task or a periodic device-output task
or a periodic device-I/O task or a periodic internal task and
task T2 is of identical type to task T1 and
both tasks, T1 and T2, have a cardinality of one and
tasks T1 and T2 have identical periods

then
combine task T1 and task T2 into a single task T3
record the decision and rationale in the design history for task T3

fi
(c) Task Structuring Rule - Periodic Tasks with Identical Periods

(a) Design Frament before Rule
Execution

 Monitor
Auto Sensors

Task

[task T3]

100 ms.

text

Monitor
Engine Sensor

Task

[task T2]

100 ms.

Monitor
Brake Sensor

Task100 ms.

[task T3 then task T1]

(b) Design Frament after Rule
Execution

Draft 08/28/00

 19

and two appropriate relationships, "Sends" and "Receives". In addition, the design
generator records the traceability between Engine Off and the new Sensor Status
Message, along with the decision and rationale. Once a message exists, additional event
flows, such as Engine On in Figures 10 (a) and (b), between the same set of tasks are
allocated as event types in a parameter of the message.

Figure 11 (a) depicts a design fragment where one task, Cruise Control, receives
queued messages from three sending tasks. In order to ensure that no incoming messages
are lost and that each message is processed in an appropriate order, Cruise Control
requires a queue to hold arriving messages. Figure 11 (c) defines one rule that generates
a queue in a specific circumstance. When a task receives multiple queued messages at
the same priority and the target environment provides message queues, a queue can be

Figure 10. Rule to Map Event Flow to a Queued Message

if
task P sends a signal S to task C and
the sink of signal S is a control object CO and
control object CO is not blocked waiting for signal S and
task P is a periodic or asynchronous device input task and
task C is a control task and
the source of signal S is a Periodic or Asynchronous Device Input Object

then
create a queued message M from task P to task C
establish the design relationship task P sends message M
establish the design relationship task C receives message M
denote the traceability between signal S and message M
record the decision and rationale in the design history for message M

fi

(c) Task Interface-Definition Rule - Event Flow Creates Queued Message

(a) Design Fragment Before Rule Execution

(b) Design Fragment After Rule Execution

Monitor
Auto

Sensors
Task

Cruise
Control
Task

Engine
1.1.2

.1 secs

Cruise
Control
1.1.1.1

[Traces]

.1 secs

Engine OnEngine
Input

[Traces]Engine Off

[signal S]

[task P] [task C]

[control object CO]

Engine On

Monitor
Auto

Sensors
Task

Cruise
Control
Task

Engine
1.1.2

.1 secs

Cruise
Control
1.1.1.1

.1 secs

[Traces]

Sensor Status Message

Engine
Input

[sends]

Engine Off

[signal S]

[queued message M] [receives][task P] [task C]

[Traces][Traces]

[control object CO]

Draft 08/28/00

 20

created to hold the incoming messages until the receiving task can consume them, as
illustrated in Figure 11 (b). An alternative mechanism can be selected using a different
rule when the target environment does not provide message queues.

While many event flows and data flows can be mapped to queued messages, the
CODARTS guidelines identify some situations requiring the use of tightly coupled
messages. These guidelines can also be represented using production rules.

if
task C receives queued messages at a single priority and
message queues are available in the target environment

then
create a queue Q for task C
establish the design relationship task C consumes queue Q
record the decision and rationale in the design history for queue Q
for each queued message M to task C

establish the design relationship queue Q holds message M
record the descision and rationale in the design history for queue Q

rof
fi

(c) Task Interface-Definition Rule - Use Single Priority Queues to Order Messages

(a) Design Fragment Before Rule Execution

(b) Design Fragment After Rule Execution

Monitor
Auto

Sensors

Cruise
Control
Task

Auto Sensor Event

Monitor
Cruise
Control
Lever

Speed
Control

Cruise Control Lever Event

Reached Cruising

[queued message]

[queued message]

[queued message]

[task C]

[receives]

[receives]

[receives]

Monitor
Auto

Sensors

Cruise
Control
Task

Auto Sensor Event

Monitor
Cruise
Control
Lever

Speed
Control

Cruise Control Lever Event

Reached Cruising

Cruise Control
Events[holds]

[consumes]

[holds]

[holds]

[queue Q][queued message]

[queued message]

[queued message]

[task C]

[receives]

[receives]

[receives]

Figure 11. Rule to Allocate a Message to a Queue

Draft 08/28/00

 21

5.4.3 Information-Hiding Module Structuring Knowledge. The CODARTS design
method permits a designer to define information-hiding modules from a flow diagram
model. This activity, called module structuring, can be carried out independently from
the structuring of tasks. The CODA design generator provides support for module
structuring by encoding CODARTS module-structuring guidelines into six decision-
making processes: (1) identify candidate modules, (2) allocate functions to data-
abstraction modules, (3) allocate remaining transformations to modules, (4) allocate
isolated elements to modules, (5) consider combining modules, and (6) determine module
operations. The first process contains seven rules that identify nodes on a flow diagram
that can be allocated to software modules. The second process consists of five rules that
find specific transformations that can be mapped to functions provided by data-
abstraction modules created during the first process. The third and fourth processes, each
consisting of three rules, determine how to map the remaining transformations and data
stores to software modules, either allocating each node to an existing module or to a new
module. The fifth process, available only to experienced designers, contains one rule to
identify situations in which a designer might prefer to combine software modules in the
emerging design. Each such situation is referred to the designer for a decision. The final
process, requiring 21 rules, determines the specific operations provided by each module
in the design, along with the parameters required by each operation. Two examples
illustrate how CODARTS module-structuring guidelines can be represented as
knowledge-based rules.

Figure 12 (c) gives a rule that encodes one of the CODARTS heuristics used to
identify an information-hiding module from nodes in a flow diagram model. In this case,

as shown in Figure 13
(a), any data store, such
as Desired Speed, which
is accessed by multiple
transformations, such as
Clear Desired Speed,
Maintain Speed, and
Select Desired Speed,
serves as the basis for a
data-abstraction module.
As a result of executing
this rule on the flow
diagram fragment shown
in Figure 13 (a), the
CODA design generator
produces the design
fragment illustrated in
Figure 13 (b) and links
the data store to the new
data-abstraction module.
Other CODARTS
heuristics lead to similar
rules for identifying

(c) Module Structuring Rule - Data-abstraction Module

if node N is a data store and
node N is accessed by multiple transformations

then
create a data-abstraction module D
record the decision and rationale in the design history for module D
denote the traceability between node N and module D

fi

Clear
Desired
Speed

1.1.1.3

[node N] [data- abstraction module D]

(a) Flow Diagram Fragment (b) Design Fragment

Desired
Speed

Desired

[Traces]

Maintain
Speed
1.1.1.4

Select
Desired

Speed
1.1.1.2

Desired
Speed

Figure 12. Rule to Identify a Data-Abstraction Module

Draft 08/28/00

 22

device-interface modules, user-interface modules, subsystem-interface modules, state-
transition modules, function-driver modules, and algorithm-hiding modules. After the
initial software modules are identified, another handful of rules can be used to allocate

any remaining nodes to software modules.
After the final module structure is set, the CODA design generator, using 21 rules,

can construct automatically the operations provided by each module and the parameters
required for each operation. For example, Figure 13 (c) gives a rule for mapping
functions to operations in three, specific types of modules: algorithm-hiding modules,
function-driver modules, and data-abstraction modules. Figures 13 (a) and (b) show an
example of the application of this rule to a design fragment. In this case, a data-
abstraction module, Desired Speed, traces in part from a function, Select Desired Speed,
which receives a control flow, Trigger, from a transformation, Cruise Control, which
does not trace to the module named Desired Speed. Here the function, Select Desired

Figure 13. Rule to Create a Module Operation

(b) Updated Flow Diagram Fragement
and Design Fragment

(c) Module Structuring Rule - Define Operation From External Function

if module M is an algorithm-hiding module or a function-driver module or a
data-abstraction module and
function F traces to module M and
((function F recieves a trigger or enable or stimulus or signal from
 transformation T and transformation T does not trace to module M) or
 (function F does not receive any trigger or enable or stimulus or signal))

then
create an operation O with the same name as function F
denote the traceability between function F and operation O
establish the design relationship module M provides operation O
record the decision and rationale in the design history for module M

fi

[Traces]

(a) Initial Flow Diagram Fragment and
Design Fragment

[module M]

Select
Desired

Speed
1.1.1.2

Desired
Speed

[Data-abstraction
Module]

[Traces]

Current
Speed

Cruise
Control

1.1.1.1

Trigger

[transformation T]

[function F]

[module M]

Select
Desired

Speed
1.1.1.2

Desired
Speed

[Data-abstraction
Module]

[Traces]

Current
Speed

Cruise
Control

1.1.1.1

Trigger

[transformation T]

[function F]

Select Desired
Speed

[operation O]

[provides]

Draft 08/28/00

 23

Speed, represents an operation that the data-abstraction module must provide to another
module. Figure 13 (b) shows the updated design fragment created by an execution of the
rule defined in Figure 13 (c).

Twenty additional rules, similar in spirit to that shown as Figure 13 (c) above,
complete the reasoning needed to generate all the operations and associated parameters
required for all the software modules found in a design. After the design generator
identifies both the modules and tasks in independent views, additional knowledge is
needed to integrate the two views.

5.4.4 Task and Module Integration Knowledge. The CODARTS design method

includes guidance about combining the task and module views into an integrated software
design. The CODA design generator represents this guidance as production rules
organized into three decision-making processes: (1) determine module placements, (2)
link tasks and external modules, and (3) link external modules. The first process
encompasses 10 rules that separate modules into two categories: those that are executed
by a single thread and those that are executed by multiple threads. In addition, these rules
place single-threaded modules within the task that executes them. The second process
contains three rules that update multi-threaded modules to indicate which tasks invoke
which operations in the modules. The third process contains four rules that identify

Figure 14. Rule to Place a State-Transition Module in a Task

if
module M is a state-transition module and
module M traces from a control object O and
task T traces from the same control object O

then
establish the design relationship that task T contains module M
record the decision and rationale in the design history for module M

fi
(c) Task And Module Integration Rule - Place State-transition Module Within Task

Cruise
Control
1.1.1.1

Brake
Pressed

Engine
On

Trigger
Select Desired

Speed

[control object O] [task T]

[Traces]

(a) Flow Diagram Fragment (b) Design Fragment

[Traces]

Trigger
Clear Desired

Speed

[module M]
[contains]

Brake
Released

Engine
Off Control Cruising

State-transition
Module

Cruise
Control

Draft 08/28/00

 24

which multi-threaded modules require which operations in other modules. The following
example illustrates the nature of task and module integration.

Figure 14 (c) gives a rule that identifies a single-threaded, state-transition module
and places that module within the task that executes it. Figure 14 (a) shows a fragment
from a flow diagram model, and Figure 14 (b) shows a fragment from a related design.
The design generator defined the state-transition module, Cruise Control, during module
structuring and the task, Control Cruising, during task structuring. Through the execution
of the rule defined in Figure 14 (c), the design generator links the two elements into an
integrated view, specifying that the state-transition module is contained within the task.
The "Contains" relationship denotes two properties: (1) the state-transition module is a
single-threaded module executed only by the containing task, and (2) the state-transition
module is hidden lexically within the containing task.

5.5 Checking Completeness and Consistency. Each design produced by CODA is
an instance of the design meta-model generated from an instance of the requirements
meta-model. This fact enables CODA to check each design for completeness, relative to
the input data/control flow diagram, and for consistency, relative to the constraints of the
design meta-model. These checks can help a designer to ensure that the design is well
formed and that no details have been overlooked. CODA writes the results of this
completeness and consistency check, along with an index of the tasks and modules
generated for the design, as a design summary. In terms of completeness, CODA checks
for the following conditions: (1) each transformation on the flow diagram is allocated to
at least one task, (2) each transformation and data store is allocated to a module, and (3)
each arc is allocated to appropriate elements in the design. During each check, CODA
lists elements on the flow diagram that remain unallocated. For consistency, CODA
checks that the design instance satisfies all constraints in the design meta-model, for
example: (1) each module is either contained within or accessed by a task or another
module, (2) each module provides at least one operation, (3) each operation is provided
by a module, (4) each task receives at least one input and writes at least one output, (5)
each internal event is both generated by and accepted by a task, (6) each external event
and timer are accepted by a task, (7) each datum is either read or written by a task, (8)
each message is either sent and received by a task or is carried as a parameter within
another message, (9) each queued message is held by a queue, and so on through the 39
constraints the must be satisfied. Each constraint violation is specifically reported so that
the designer can investigate.

Completeness and consistency checking is implemented by treating each design and
flow diagram instance as an object-oriented database. When checking for completeness,
each predicate is encoded as an object-oriented query that asks if a specific element on
the flow diagram does not have traceability to an appropriate element in the design.
When checking for consistency, each predicate, representing some constraint, is encoded
as an object-oriented query against the database. Some of these queries can be quite
complex. In most cases, a consistency query first checks for the existence of any single
instance that violates a constraint. Once a specific constraint is violated, a query then
checks for every instance that violates the constraint, and reports each violation.

Viewing the meta-model as the schema for an object-oriented database opens up
additional power because instances of meta-model can then be queried in an ad hoc
manner. CODA implements some of these ad hoc queries in a canned form that a

Draft 08/28/00

 25

designer can use to answer a range of questions, such as which design elements follow
from which elements on a flow diagram and vice versa. This approach also opens the
door to recall the rationale used to generate each element on the design.

5.6 Capturing and Recalling Design Rationale. Whenever the CODA design
generator takes a design decision the decision is recorded in human-readable text
assigned to the relevant design element. Using the query interface provided by CODA, a
designer can ask interactively for an explanation of any element in a design instance. The
query interface sends an explain message to the appropriate design element, which then
writes its design history to the display. For each decision made about the design element,
the design element reports the rule used to make the decision, the action taken, and the
rationale for the action. In addition, a designer can request that a decision trace file be
generated during a design session. In this case, a record of all design decisions is also
available immediately after the design has been generated.

Draft 08/28/00

 26

6. Case Study: Automobile Cruise-Control Subsystem

To illustrate the practical application of the ideas discussed in Section 4, this section
describes how CODA generates a design for an automobile cruise-control subsystem.
Only a small excerpt is given; the entire case study is described elsewhere [21]. In what
follows, the CODA model analyzer transforms a fragment from a flow diagram model
into a COBRA model by annotating the flow diagram with labels that represent semantic
concepts from the COBRA meta-model discussed previously in Section 5.1. From the
annotated flow diagram, the CODA design generator interacts with an experienced
designer to produce a concurrent design. CODA is also capable of generating a design
for a novice designer, who gives no guidance during the design generation. The ten
designs evaluated in Section 7 include designs generated both with and without human
assistance.

6.1 Applying the CODA Model Analyzer. The data-flow model fragment in Figure

15 uses RTSA notation, describer in Figure 1, to depict the fundamental speed control
aspects of a cruise-control system. Figure 15 also represents the output of the CODA
model analyzer. Each RTSA syntactic element on the flow diagram is annotated with a
label, in square brackets, which corresponds to one of the 36 COBRA semantic concepts
listed in Figure 4. (Disables, Enables, and Triggers are not annotated because the labels
would be redundant.) Each annotation depicts the COBRA semantic concept assigned by
the model analyzer to the associated syntactic element. The CODA model analyzer
inferred the correct COBRA semantic concepts for every element of the flow diagram,
consulting with the designer on only one point: whether terminators represented devices.
When the designer is unable to classify the terminators, the model analyzer assumes,
correctly in this case, that all terminators represent devices. In cases where the
assumption proves incorrect, then the resulting design would also prove incorrect. The
automated capture of design rationale helps the designer to identify instances where
assumptions were used.

Once the semantic classifications are completed, the model analyzer checks each
element to determine if additional information must be supplied. In Figure 15, six event
flows represent timers. The model analyzer ensures that the designer provides a positive
period for each timer. The model analyzer also discovers a system input from an
asynchronous device, the cruise control lever. The model analyzer asks the designer to
provide a value for the maximum rate at which these inputs are expected to arrive. After
all the necessary information has been obtained, the model analyzer checks the semantic
classifications and the axioms for each element in the flow diagram. In this case, all of
the concepts are properly classified and all the axioms are satisfied. Had discrepancies
been detected, the designer would be required to correct them prior to invoking the
CODA design generator.

6.2 Applying the CODA Design Generator. After analyzing the flow diagram in

Figure 15, an experienced designer decides to generate a concurrent design, beginning
with task structuring. The designer chooses a target environment and then invokes the

Draft 08/28/00

 27

CODA design generator to structure tasks for the design. The resulting design, as
generated by CODA, is shown in Figure 16.

6.2.1 Structuring Tasks. The design generator begins by allocating candidate tasks for
each of three transformations in Figure 15, Maintain Speed, Resume Cruising, and
Increase Speed. The design generator uses the CODARTS criterion for identifying
control tasks to allocate additional candidate tasks based on another transformation,
Cruise Control. The remaining tasks identified by the design generator result from
device-interface objects. The design generator allocates a task from each of three device-

Cruise
Control
1.1.1.1

[Control Object]

Select
Desired Speed

1.1.1.2

[Triggered
Synchronous

Function]

Clear
Desired Speed

1.1.1.3

[Triggered
Synchronous

Function]

Maintain Speed
1.1.1.4

[Enabled Periodic
Function]

Resume
Cruising
1.1.1.5

[Enabled Periodic
Function]

Increase
Speed
1.1.1.6

[Enabled Periodic
Function]

Trigger

Trigger

Enable

Disable

Enable

Enable

Disable

Disable

Current
Speed

[Retrieve]

Desired
Speed
[Store]

Desired
Speed
[Store]

Desired Speed
[Retrieve]

Current Speed
[Retrieve]

Throttle Value
[Stimulus]

Speed Strobe
[Timer]

Reached
Cruising
[Signal]

Throttle Value
[Stimulus]

Current Speed
[Retrieve]

Resume
Strobe
[Timer]

Throttle Value
[Stimulus]

Increase Strobe
[Timer]

Brake
Released
[Signal]

Brake
Pressed
[Signal]

Engine Off
[Signal]

Engine On
[Signal]

Accel
[Signal]

Cruise
[Signal]

Off
[Signal]

Resume
[Signal]

Desired Speed
[Retrieve]

Throttle
Actuator
[Device]

Desired
Speed

[Data Store]

Brake
1.1.3

[Periodic Device
Input Object]

Brake Data
[Input]

Brake
Strobe
[Timer]

Brake
Sensor

[Device]

Throttle
1.1.5

[Periodic Device
Output Object]

Throttle
Position
[Output]

Throttle
Strobe
[Timer]

Engine
1.1.2

[Periodic Device
Input Object]

Engine Data
[Input]

Engine
Strobe
[Timer]

Engine
Sensor

[Device]

Cruise
Control Lever

1.1.4

[Asynchronous
Device Input

Object]

Cruise
Control Data

[Input]

Lever
Strobe

[Interrupt]

Four-Position
Lever

[Device]

Figure 15. Annotated Flow Diagram Model of the Speed Control Aspects of an
Automobile Cruise Control Subsystem [Annotation Shown in Square Brackets]

Draft 08/28/00

 28

interface objects, Brake, Engine, and Throttle, based on the CODARTS criterion for
identifying periodic input/output tasks. The design generator also allocates a task from
another device-interface object, Cruise Control Lever, based on the CODARTS criterion
for identifying asynchronous input/output tasks.

Next, the design generator examines the remaining, unallocated transformations, in an
effort to allocate them to appropriate tasks based upon CODARTS criteria for sequential

and control cohesion or upon guidance elicited from the designer. In this case, the design
generator needed no guidance from the designer. Table 2 shows the initial task
structuring decisions made by the design generator during this decision-making process.

During the next decision-making process the design generator examines the set of
candidate tasks in an effort to combine tasks, where feasible. The design generator
combines three tasks (1-3) based on mutual exclusion because none of the constituent
transformations, Increase Speed, Maintain Speed, and Resume Speed, can execute
simultaneously. The design generator combines the Brake and Engine tasks, Task 5 and
Task 6, respectively, because these periodic input tasks operate with identical, 100 ms,
periods. The final task structuring, generated by CODA, is given in Table 3.

Figure 16. A Concurrent Design Generated by CODA from the Data-Flow Diagram
Fragment Given in Figure 15.

Brake
Input

Engine
Input

Timer
Expiration

Lever
Interrupt

Cruise
Control
Input

Cruise Control
Events

Auto Sensor
Event

CC Lever
Event

Cruise
Control

Control Cruising

Control Auto Speed

Speed
Command

Adjust Throttle
Request

Throttle Position

Timer Expiration

Reached
Cruising

Maintain Timer Expiration
Resume Timer Expiration

Increase Timer Expiration

Brake Engine

Monitor Auto Sensors

CC Lever

Monitor Cruise Control Lever

Select

Clear

Read

Desired
Speed

Throttle

Adjust Throttle

Speed
Control

Current Speed

Read

Draft 08/28/00

 29

6.2.2 Defining Task Interfaces. After structuring tasks, the designer decides to

continue building the design by defining interfaces between the tasks. First, the design
generator determines the external interfaces for each task. Incoming data flows from
devices, outgoing data flows to devices, and incoming event flows from devices are
allocated to inputs, outputs, and interrupts, respectively, for the appropriate tasks. Each
timer event flow stimulating a task is mapped to a timer interface for the stimulated task.
As a last step, all data and event flows exchanged between tasks are identified and
marked for subsequent consideration.

Table 2. Candidate Tasks Allocated by the CODA Design Generator

Candidate Tasks Transformation Structuring Criterion
Task 1 Increase Speed Controlled Periodic Task
Task 2 Maintain Speed Controlled Periodic Task
Task 3 Resume Speed Controlled Periodic Task

Task 4

Cruise Control
Select Desired Speed
Clear Desired Speed

Control Task
Control Cohesion
Control Cohesion

Task 5 Brake Periodic Input/Output Task
Task 6 Engine Periodic Input/Output Task
Task 7 Throttle Periodic Input/Output Task
Task 8 Cruise Control Lever Asynchronous Input/Output Task

Table 3. Summary of Task Structuring Decisions Made by CODA

Task Transformations Allocated Structuring Criterion

Control Auto Speed

Increase Speed
Maintain Speed
Resume Speed

Controlled Periodic Internal
 Tasks
Mutual Exclusion

Control Cruising

Cruise Control
Select Desired Speed
Clear Desired Speed

Control Task
Control Cohesion

Monitor Auto Sensors

Brake
Engine

Periodic Device I/O Tasks
Temporal & Functional
 Cohesion

Adjust Throttle Throttle Periodic Device I/O Task
Monitor Cruise Control
Lever

Cruise Control Lever Asynchronous I/O Task

Next, the design generator considers how event flows between pairs of tasks might

be allocated. The design generator allocates event flows from the Monitor Auto Sensors
and Monitor Cruise Control Lever tasks to queued messages. These events flow into a
state-transition diagram and, thus, none should be missed and their arrival order should
be preserved. In addition, the two input tasks that generate these events should not be
delayed waiting for the Control Cruising task to accept the events. The design generator

Draft 08/28/00

 30

maps all control flows from the Control Cruising task to the Control Auto Speed task
onto a single tightly coupled message. The design generator selects this mapping because
the Enable and Disable signals are transmitted during a state-transition, and thus the
sending task requires synchronization with the task receiving these control flows.

The design generator is less certain how to map the event, Reached Cruising, which
flows from the task Control Auto Speed to the task Control Cruising. In general, this
decision depends upon whether the sender of the event needs to synchronize with the
receiver of the event. The design generator cannot determine if this is the case. Since the
designer is using CODA in its experienced-designer mode, CODA asks the designer
whether synchronization is required for this event. In this case, the designer says
synchronization is not required, so the design generator maps the event onto a queued
message.

After deciding how to map all the events that flow between tasks, the design
generator next considers how to map all the data flows between pairs of tasks. In this
case, three data flows must be considered. Each of these data flows is an instance of
Throttle Value. As Figure 15 shows, these data flows arrive at the Throttle transformation
from three transformations, Maintain Speed, Resume Cruising, and Increase Speed.
These three transformations have been combined into a single task that is separate from
the task that controls the Throttle. The design generator, uncertain about the
synchronization requirements for these data flows, consults the designer for additional
information. The designer indicates that the sender and receiver must rendezvous around
these data flows; subsequently, the design generator maps all three data flows to a single
tightly coupled message from the task Speed Control to the task Adjust Throttle.

Next, the design generator recognizes that one task, Cruise Control, receives queued
messages from multiple sources. Since the designer is using CODA in experienced
mode, the design generator offers an opportunity to assign varying priorities to these
messages. In this case study, the designer declines the offer. The design generator then
examines the facilities available in the intended target environment and defines
appropriate mechanisms for holding queued messages. Since the target environment
provides message queuing services and tasks exchange queued messages at a single
priority, the design generator allocates a first-in, first-out message queue for each task
that receives queued messages. A summary of the task interfaces generated by CODA is
given in Table 4.

6.2.3 Structuring Information-Hiding Modules. Before the design can be completed,
the designer must apply information-hiding criteria to identify modules. The CODA
design generator makes most of the module structuring decisions without consulting the
designer; however, since the designer is operating in experienced mode, the design
generator consults the designer in a few cases where the designer’s insights might
improve upon the decisions.

The design generator begins module structuring by considering which
transformations and data stores should form the basis for candidate information-hiding
modules. The design generator discovers three transformations to combine into a single,
function-driver module, two data stores from which to allocate data-abstraction modules,
one transformation that forms the basis for a state-transition module, and four
transformations that lead to device-interface modules.

Draft 08/28/00

 31

Table 4. Summary of Task Interface Decisions Made by CODA

Interface Element Data/Control Flows Allocated Allocation Criteria
Auto Sensor Event Engine On, Engine Off,

Brake Pressed, Brake Released
Queued Message

Monitor Auto Sensors Engine Strobe and Brake Strobe Timer
Engine Input Engine Data Input
Brake Input Brake Data Input
CC Lever Event Accel, Cruise, Off, Resume Queued Message
Lever Interrupt Lever Strobe Interrupt
Cruise Control Input Cruise Control Data Input

Speed Command

Enable/Disable Maintain Speed
Enable/Disable Increase Speed
Enable/Disable Resume Cruising

Tightly- Coupled Message

Reached Cruising Reached Cruising Queued Message
Maintain Timer Maintain Strobe Timer
Resume Timer Resume Strobe Timer
Increase Timer Increase Strobe Timer
Adjust Throttle Request Throttle Value (3) Tightly-Coupled Message
Adjust Throttle Timer Throttle Strobe Timer
Throttle Position Throttle Position Output

Next, the design generator attempts to allocate any unallocated transformations and

data stores to existing or new modules. Two unallocated transformations, Select Desired
Speed and Clear Desired Speed, are mapped to functions incorporated into an existing
data-abstraction module, Desired Speed.

At this stage, the modules in the design are established and the design generator next
constructs the operations and associated parameters required by each module. This
occurs without consulting the designer. Table 5 provides a summary of the module
structuring decisions made by CODA for this case study.

Table 5. Summary of the Module Structuring Decisions Made by CODA

Module Transformation / Data Store Structuring Criteria

Control Auto Speed

Increase Speed
Maintain Speed
Resume Speed

State-Dependent, Function-
 Driver Module

Desired Speed

Desired Speed
Clear Desired Speed
Select Desired Speed

Data-Abstraction Module
DAM Update Operation

Cruise Control Cruise Control State-Transition Module
Throttle Throttle Device-Interface Module
CC Lever Cruise Control Lever Device-Interface Module
Brake Brake Device-Interface Module
Engine Engine Device-Interface Module

Draft 08/28/00

 32

6.2.4 Integrating Tasks and Modules. Once task and module structuring are

completed, the designer asks the CODA design generator to integrate these two views.
The design generator first determines the logical placement of the eight modules, relative
to the five tasks. Device-interface modules for unshared devices are placed within the
tasks that access the associated device; so, for example, the Brake module and the Engine
module go inside the task named Monitor Auto Sensors. Modules accessed by a single
task, such as Speed Control, which is accessed only by the task Control Auto Speed, are
placed within the accessing task. Modules accessed by multiple tasks, such as Desired
Speed, are placed outside any task.

Once the relationships between tasks and modules are determined completely, the
design generator examines possible connections between modules residing outside any
task. Where an operation in one such module invokes an operation in another, the design
generator establishes a relationship stating that the invoking operation requires the
invoked operation. For each module that provides operations required by another
module, the design generator creates a relationship indicating that the providing module
serves the requiring module. For example, in this case study, an operation, Select,
provided by the module Desired Speed, requires another operation, Read, provided by the
module Current Speed. Current Speed, then, serves Desired Speed. All of these
decisions are made without consulting the designer.

At this point the design is complete. When the designer requests that the design be
written, the design generator constructs a specification and design history for each task
and module.

7. Evaluation

The approach described in the preceding sections was mapped onto various
knowledge representation techniques provided by an expert-system shell, CLIPS Version
6.0 [29], to produce CODA. CODA was then applied to four real-time problems that
often appear in the literature: an automobile cruise control and monitoring system, a robot
controller, an elevator control system, and a remote temperature sensor. For each
problem, CODA was used to analyze a flow diagram model and then to generate one or
more concurrent designs.

The following discussion evaluates the effectiveness of the knowledge-based
approach to design generation, as embodied in CODA. Two questions are addressed.
First, what degree of automation was achieved by CODA on the four real-time problems
to which it was applied? Second, how do the designs generated by CODA, with and
without human assistance, compare with designs produced by a human designer for the
same problems?

7.1 Degree of Automation Achieved with CODA. CODA automates two aspects of

the design process: model analysis and design generation. The degree of automation
achieved for each of these aspects is considered in turn below.

7.1.1 Automation Achieved with the Model Analyzer. During model analysis, CODA
classified 358 elements on data/control flow diagrams. Of these, 308 elements, or 86%,
required no help from the designer: 290 elements, or 81%, were classified automatically,

Draft 08/28/00

 33

while 18, or 5%, were data stores, which are directly represented using RTSA notation.
The remaining 50 elements, or 14%, were classified after interaction between CODA and
a designer. For 29 elements, or 8%, CODA asked the designer whether a terminator
represented a device, external subsystem, or user role. The remaining classification
decisions where CODA required help were split between two categories: for eight
elements, or 2%, CODA made a tentative classification that the designer had to confirm
or override, and for the remaining 13 elements, or 4%, CODA required additional
information from the designer in order to make a classification. Further information about
the performance of the model analyzer can be found elsewhere [22].

7.1.2 Automation Achieved with the Design Generator. The CODA design generator
was used to generate ten concurrent designs from data/control flow diagrams, augmented
by the model analyzer with labels representing COBRA semantic concepts. Of the 1,571
CODARTS design decisions required to generate the ten designs, 1,527, or 97%, were
taken without human intervention. Tables 6, 7, 8, 9, and 10 provide further detail.

Table 6 contains a summary of the 189 task structuring decisions made by CODA,
where 82 decisions involved identifying tasks using the task structuring criteria and 107
decisions involved reducing the number of tasks using the task cohesion criteria (Sections
3 and 4.4.1). Seven decisions, all involving task mergers, used human assistance. Six of
these decisions involved assignment of data transformations to an existing task in cases
where the flow diagram indicates multiple possibilities. In general, choosing an
appropriate task requires application-specific knowledge about the functions that each
data transformation performs. CODA also asked the designer for help before combining
two tasks with harmonic periods. An experienced designer might be able to discern
discrepancies in task priority in cases where tasks might otherwise be combined based on
temporal and functional cohesion.

Table 6. Automation Achieved by CODA during Task Structuring

Design Decision Total Unassisted Assisted
All Task Structuring Decisions 189 182 (96%) 7 (4%)

Identify Tasks (using structuring criteria) 82 82 (100%) 0
Input/Output Tasks 35 35 (100%) 0
Internal Tasks 45 45 (100%) 0
Resource Monitor Tasks 2 2 (100%) 0

Merge Tasks (using cohesion criteria) 107 100 (94%) 7 (6%)
Control Cohesion 16 16 (100%) 0
Mutual Exclusion 6 6 (100%) 0
Sequential Cohesion 66 60 (91%) 6 (9%)
Task Inversion 8 8 (100%) 0
Temporal/Functional Cohesion 11 10 (91%) 1 (9%)

Table 7 summarizes the 479 decisions taken by CODA when defining interfaces

between tasks. CODA made 95%, or 454, of the needed decisions without any
assistance. These included all 143 decisions required to identify data flows and control
flows exchanged between tasks. Allocating control flows proved relatively easy for
CODA. Two of 130 control flow allocations used designer assistance. Both cases

Draft 08/28/00

 34

involved ambiguity about the synchronization required when tasks exchanged a control
flow. CODA made relatively liberal use of designer aid to allocate 170 data flows. In 20
of the 170 cases, CODA asked the designer about synchronization requirements
surrounding a data flow. Allocating queue interfaces also proved relatively easy. Here,
CODA consulted with a designer in three cases, in order to determine message priorities.

Table 7. Automation Achieved by CODA during Task-Interface Definition

Design Decision Total Unassisted Assisted
All Task Interface Decisions 479 454 (95%) 25 (5%)

Identify Inter-Task Exchanges 143 143 (100%) 0
Allocate Data Flows 170 150 (88%) 20 (12%)

Input 53 53 (100%) 0
Output 37 37 (100%) 0
Queued Message 52 42 (81%) 10 (19%)
Tightly Coupled Message 28 18 (64%) 10 (36%)

Allocate Control Flows 130 28 (99%) 2 (1%)
Hardware Interrupt 28 28 (100%) 0
Timer 38 38 (100%) 0
Software Interrupt 20 20 (100%) 0
Tightly Coupled Message 15 13 (87%) 2 (13%)
Queued Message 29 29 (100%) 0

Allocate Queue Interface 36 33 (92%) 3 (8%)
Assign Priorities 3 0 3 (100%)
Allocate Messages 33 33 (100%) 0

Table 8 reveals the performance of CODA while structuring information-hiding

modules. Here, CODA made 163 of the 175 decisions without assistance. Identifying
modules required no designer help, because the model analyzer had classified
transformations on the flow diagrams so that the CODA design generator could easily
identify modules. To reduce the number of modules, CODA turned to a designer for help
in 12 of 81 cases. In one form or another, each of the 12 cases involved application-
specific knowledge about the function of data transformations. In some cases, functional
cohesion provided sufficient reason to combine modules. CODA has no insight into
functional issues without consulting a designer.

While structuring information-hiding modules, CODA also defines module
interfaces. As shown in Table 9, CODA required no help to make the 525 decisions that
were required to define module interfaces. This result occurred because CODA encodes
a predetermined strategy to define module interfaces. A human designer might choose
among a wide range of strategies to create module interfaces.

Table 10 reports the automation achieved by CODA when integrating the task and
module views of concurrent designs. All 203 decisions required were made by CODA
without assistance. The decisions accomplished three objectives. First, 109 decisions
determined how modules would be placed relative to execution threads for the various
tasks in the designs. Second, 54 decisions generated calls from tasks to specific
operations in modules that were accessed by multiple threads. Finally, 40 decisions

Draft 08/28/00

 35

generated calls from operations in one shared module to specific operations in another
shared module.

Table 8. Automation Achieved by CODA while Structuring Information-Hiding

Modules

Design Decision Total Unaided Assisted
All Module Structuring Decisions 175 163 (93%) 12 (7%)

Identify Modules 94 94 (100%) 0
Device-Interface Module (DIM) 53 53 (100%) 0
State-Transition Module (STM) 8 8 (100%) 0
Data-Abstraction Module (DAM) 29 29 (100%) 0
Algorithm-Hiding or Function-
Driver Module (AHM or FDM)

4 4 (100%) 0

Reduce Modules 81 69 (85%) 12 (15%)
Operation of DAM 48 48 (100%) 0
Sequential/Functional Cohesion 25 17 (68%) 8 (32%)
Merge DAMs 8 4 (50%) 5 (50%)

Table 9. Automation Achieved by CODA when Defining Module Interfaces

Design Decision Total Unassisted Assisted
All Module-Interface Definition Decisions 525 525 (100%) 0

Determine Module Operations 413 413 (100%) 0
DIM Operation 173 173 (100%) 0
STM Operation 8 8 (100%) 0
DAM Operation 48 48 (100%) 0
AHM or FDM Operation 124 124 (100%) 0
Operation Internal to Module 59 59 (100%) 0

Determine Additional Operation Parameters 112 112 (100%) 0

Table 10. Automation Achieved by CODA when Integrating Tasks and Modules

Design Decision Total Unassisted Assisted
All Task and Module Integration Decisions 203 203 (100%) 0

Place Modules Relative to Execution Threads 109 109 (100%) 0
Generate Task to Module Calls 54 54 (100%) 0
Generate Module to Module Calls 40 40 (100%) 0

7.2 Comparison of Generated Designs with Human Designs. The four case

studies reported in this paper consist of real-time problems, specified with text,
data/control flow diagrams, and, where applicable, state-transition diagrams, taken from
the literature. For each of these problems, at least one design, generated by a human
designer, exists in the literature [7, 11]. This allows the solutions generated by CODA to
be compared with existing solutions from human designers. The designs generated by
CODA exhibit minor differences from the human designs. Differences should certainly

Draft 08/28/00

 36

be expected because a human designer must make each and every decision when
manually producing a design, whereas CODA attempts to minimize the interaction with
the human designer by taking many decisions without consultation. In the case studies,
differences appear where human designers take design decisions based on knowledge that
CODA does not possess and cannot elicit, or where CODA takes predetermined
strategies when a human designer might choose among a wide range of options. Table 11
presents a quantitative look at the similarity between designs generated by CODA and
designs developed by human designers.

Table 11. Similarity among Designs

Design

Task
Structuring

Task
Interface
Definition

Module
Structuring

Module
Interface
Definition

Task &
Module
Integration

All
Design
Decisions

Cruise Control -
Assisted CODA vs.

Human

1.00
(48/48)

1.00
(68/68)

.98
(45/46)

.97
(123/127)

.98
(63/64)

.98
(347/353)

Robot Controller -
Assisted CODA vs.

Human

1.00
(17/17)

1.00
(54/54)

.95
(18/19)

.93
(63/68)

1.00
(16/16)

.97
(168/174)

Elevator Control
System - Assisted
CODA vs. Human

.95
(20/21)

.89
(33/37)

1.00
(15/15)

.96
(48/50)

1.00
(15/15)

.95
(131/138)

Remote Temperature
Sensor - Assisted
CODA vs. Human

.95
(19/20)

.89
(31/35)

N/A

N/A

N/A

.91
(50/55)

Cruise Control -
Unassisted CODA vs.

Human

1.00
(48/48)

.97
(66/69)

.91
(42/46)

.96
(122/127)

.92
(60/65)

.95
(338/355)

Each row of Table 11 reports the design decisions taken to produce two designs from

the same specification. In each case, one design was produced by CODA, while the other
design was produced by a human designer and reported in the literature. Rows one
through four report results when CODA could consult an experienced designer for
assistance. The fifth row documents the performance of CODA in a case where every
design decision was taken without consulting a human designer. Columns two through
six report the design decisions applicable to a particular phase of the design process.
Column seven accumulates all the design decisions reported across columns two through
six. Each cell contains a similarity metric, computed using the ratio shown in parentheses
below the metric. A similarity value of 1.00 indicates two designs are identical; the
lower the value, the more the designs differ. The following formula defines the similarity
metric, S.

S = (max(CD, HD) - delta(CD, HD)) / max(CD, HD)

In the formula, CD denotes the number of design decisions executed by CODA, whether
assisted or not, to generate the design. HD denotes the number of design decisions taken
by the human designer to produce the design. The delta function denotes the number of
design decisions that differ between CD and HD.

Draft 08/28/00

 37

Considering all design decisions, the similarity between designs generated by CODA
and those produced by a human ranged from a low of .91 for the remote temperature
sensor to .98 for the cruise control. For the remote temperature sensor design, the human
designers did not fully adhere to the CODARTS guidelines. Instead, the designers used
an earlier version of the guidelines, called DARTS, which did not consider semantic
interpretation of elements on the flow diagram model [10-11, 30]. No module structuring
information is reported for the remote temperature sensor because the human designers
allocated AdaTM packages rather than information-hiding modules; thus, these results
cannot be compared legitimately with the module design generated by CODA.

In the absence of assistance, as reported in the last row of Table 11, CODA relies
solely on its built-in knowledge to resolve ambiguous or incomplete situations. These
situations generally fall into four classes: (1) decisions about merging tasks, (2) decisions
about merging modules, (3) decisions about the synchronization requirements between
tasks, and (4) decisions about assigning priorities to inter-task messages. The CODA
knowledge base contains default rules that take conservative decisions, which lead to
valid designs that can be less efficient than designs generated with human assistance.
When working without human assistance, CODA tends to generate designs that contain
more tasks and modules. In addition, without human input, CODA will generally map
event and data flows to queued messages in order to avoid deadlocks and to enable tasks
to execute freely whenever possible. In some run-time systems, queued messages can
take longer to exchange than tightly coupled messages.

As the last row of Table 11 shows, even without assistance from an experienced
designer, CODA can produce designs fairly similar (.95) to those produced solely by
human designers. This positive result occurs because the cruise control specification was
developed with strong adherence to the COBRA guidelines and because the specification
contained just a few situations where CODA might profit from consulting a designer. In
other cases, results obtained without human assistance can be expected to vary
significantly depending on the number of decisions that CODA faces where a human
designer might provide effective advice.

8. Discussion
In addition to the performance of CODA some other issues merit discussion. In Section
8.1, the approach embodied in CODA is compared against some other approaches that
aim to automate software design methods. Section 8.2 gives a summary of contributions
from the current work, as described in this paper.

8.1 Comparison of CODA with Other Approaches to Automate Software Design
Methods. Table 12 compares CODA against the four approaches to design-method
automation that were described earlier in Section 3.3. The table indicates some advances
achieved by CODA. First, three methods, CAPO, EARA, and STES, produce sequential
designs. While SARA produces a concurrent design, it does so by using a second
behavioral model that restricts the parallelism present in the basic data flow diagram.
CODA can produce a concurrent design from a single behavioral model, documented
with a data/control flow diagram. Second, since CAPO, EARA, STES and SARA use a
single technique for design generation, either production rules or clustering algorithms, a
number of desirable properties are difficult to realize in their design generators. For
example, completeness and consistency checking, which cannot be implemented with

Draft 08/28/00

 38

clustering algorithms, can be implemented only with difficulty using rules. CODA uses
knowledge-based queries to automatically check a generated design for completeness and
consistency. Third, only two of the methods, EARA and CODA, provide explicit
traceability from the behavioral model to the software design. For EARA, this traceability
is strictly one-way, from specification to design. For CODA, the traceability is bi-
directional. In addition, CODA alone automatically captures the rationale for design
decisions. Fourth, although most of the approaches require elicitation of information
from a human designer, only CODA provides distinct operating modes to accommodate
experienced and inexperienced designers. Fifth, CODA alone can vary the generated
designs to account for variations in the target environment. Significant variations might
include the availability of message queuing services and the number of signals permitted
between tasks. Many of the characteristics of a target environment become significant
when constructing a concurrent design.

Table 12. CODA Compared with Other Automated Software Design Methods

Research Project

Feature CAPO STES EARA SARA CODA
Input Model DFDs DFDs DFDs DFDs/SVD DFD/CFDs

Output Model

Structure
Charts

Structure
Charts

Structure
Charts

GMB /
Structural
Model

Task/Module
Specs/Design
Meta-Model

Decision Method Coupling/
Cohesion

Structured
Design

Structured
Design

Mapping
Rules

COBRA/
CODARTS

Underlying
Techniques

Clustering
Algorithms

Production
Rules

Rule
Rewriting

Production
Rules

Production
Rules/
Semantic
Modeling

Completeness/
Consistency
Checking

No

No

No

No

Yes

Traceability Implicit Explicit Implicit Implicit Explicit
Design Rationale
Capture

No No No No Yes

Interacts with
Designer

No Yes

Yes Yes Yes

Has a
Experienced
Mode and
Inexperienced
Mode

No

No

No

No

Yes

Varies Design
With Target
Environment

No

No

No

No

To a limited
extent

Draft 08/28/00

 39

8.2 Contributions. Unlike previous approaches to design automation, the approach
described and evaluated in this paper develops and exploits an underlying meta-model
that can represent and reason about instances of requirements models, design models, and
the relationships between the two. As a result, the approach leads to several
improvements in the state-of-the-art in software design automation. First, the existence of
a meta-model enables a designer to check design model instances for consistency and
completeness with respect to the meta-model. Such consistency and completeness
checking, not supported by previous design automation approaches, helps a designer to
improve the quality of a design. Second, the meta-model enables the design automation
system to explicitly and automatically track traceability between elements in a
requirements model and elements in a design model. While a few design automation tools
have previously supported traceability, the approach described in this paper provides bi-
directional traceability at a finer level of granularity, and also includes traceability
constraints that can be used during automated consistency checking. More importantly,
the approach discussed in this paper also automatically captures design rationale. Using
the design rationale capture mechanism, a designer can review the reasoning behind
various automated design decisions, and can determine if any of the decisions need to be
overridden.

Further, novice designers can use the rationale capture mechanism to learn the
reasoning behind various steps and heuristics included in the design method that
underlies the automated design mechanism. The approach can also compensate for novice
designers. Specifically, when a designer is a self-declared novice, the design automation
mechanism will not query the designer regarding various subtle issues likely to require
the knowledge of an experienced designer. Instead, the design automation mechanism
uses default assumptions to resolve these subtle issues without interacting with a novice.
The resulting designs will be correct, but can be sub-optimal. When interacting with a
self-declared experienced designer, the automation mechanism will pose questions
regarding various subtle issues that may appear in particular designs. In these cases, the
affected design decisions can be influenced by specific guidance elicited from the
designer. In the absence of such guidance, the design automation mechanism remains
prepared to use its default assumptions.

Finally, the design automation mechanism provides some capability to vary the
generated designs after taking into account specific design guidelines or specific traits of
the intended target environment. Examples of design guidelines might include a task-
inversion threshold, priority-assignment algorithms, and task-allocation algorithms.
Target environment traits of interest might include: (1) the existence or absence of shared
memory, message passing mechanisms, and priority queues, (2) the maximum number of
inter-task signals and task priorities supported by a target operating system, and (3) the
number of processors. As implemented, the automated design mechanism can account in
a limited form for many of these factors. More research remains to exploit this
information in later phases of the design automation. For example, generated designs
might be instantiated automatically for specific target platforms, and then the design
could be simulated to assess its performance.

Draft 08/28/00

 40

9. Future Research
The work reported here suggests several directions for future research. One class of

research directions addresses extensions to the current work; a second class investigates
issues beyond the scope of the current work. Each class is addressed in turn.

9.1 Extensions to Current Work. The approach embodied in CODA might be

extended to any software design methods that model behavior using graphical notations
to represent data or control flow among semantic elements arrayed in directed graphs.
For example, the semantic concepts in COBRA appear quite similar in intent to
stereotypes in the Unified Modeling Language (UML) [6, 31-33]. UML collaboration
diagrams appear similar in conception to flow diagrams used in COBRA. UML
collaboration diagrams, properly labeled with stereotypes and augmented with additional
information, could possibly be input to a design generator to produce a concurrent design.

In another extension, future research might investigate the use of a design
generator to automatically map a concurrent design onto specific hardware architectures.
The work presented here addresses variations in target environments, but to a limited
extent. For example, the message queuing and software signaling services provided by
target environments are considered when CODA generates task interfaces. Larger issues,
such as the number of processors and the availability of various forms of shared memory,
have not been considered. In addition, various algorithms can be identified for assigning
tasks to processors and for assigning priorities to tasks within each processor. This
information might be exploited to support automated mapping to specific hardware.

In another extension, future research could investigate automated support for
partitioning behavioral models into subsystems. The current research assumes that
concurrent designs are generated for single subsystems only. Many concurrent designs
are mapped onto distributed systems of networked computers. Designers use various
criteria for allocating elements from behavioral models to subsystems that can be
distributed onto loosely coupled computing nodes. These criteria might be automated.

Additional research might investigate the scalability of the approach to larger
problems. Checking a behavioral model to ensure that all axioms are satisfied can take
quite some time as the size of the model increases. In the current research, the largest
problem tackled, an automobile cruise control and monitoring system, consisted of 58
nodes and 112 directed arcs. For this model, checking axioms took about 15 seconds on a
266 MHz Pentium II processor. Further research might establish the performance
characteristics of the underlying model checking and design generation algorithms as the
model size increases.

9.2 Beyond the Current Work. Evaluating the quality of the designs generated
by CODA required comparison against the work of human designers on the same
problems. This comparison leaves open the issue of the quality of designs in general.
How can software designs, no matter what their source, be assessed for quality? The
current work on CODA captures information about the frequency of task executions and
about the maximum rate at which external stimuli arrive at the system. While not used in
the current work, this information could facilitate future research regarding automated
evaluation of the performance of designs using rate-monotonic scheduling theory or
dynamic simulation. Evaluating design quality along other dimensions, such as

Draft 08/28/00

 41

maintainability, reliability, and testability, might also provide some interesting research
challenges.

10. Conclusions
Advances in knowledge engineering hold potential for effective automation of

software design methods. This paper presented a knowledge-based approach, integrating
semantic data modeling with production rules and knowledge-based queries, to automate
COBRA, an object-based behavioral modeling method, and CODARTS, a software
design method for concurrent and real-time systems. The approach leads directly to an
automated designer's assistant, CODA, which was applied to generate ten designs for
four real-time problems. During the generation of the designs for these case studies, the
design generator made 97% of all design decisions without consultation. The remaining
decisions involved a variety of cases calling for a designer's judgment. When defining
module interfaces and integrating the task and module views of concurrent designs,
CODA uses predetermined strategies to achieve full automation that leads to acceptable
results. A human designer would be free to consider a wide range of options that might
lead to designs exhibiting differences in detail from those generated by CODA. For the
case studies, the similarity between designs generated by CODA and designs generated
by human designers for the same problems varied from a low of .91 to a high of .98,
where a similarity of 1.00 denotes identical designs.

The approach described in this paper could assist designers to create concurrent
designs. For example, CODA could be embedded in computer-aided software
engineering (CASE) systems. Most CASE systems enable a designer to enter flow
diagrams and structure charts, or other representations of a software design; however, a
human designer, outside the CASE system and without automated assistance, must
perform the process of creating the software design from the flow diagrams. Where a
tool such as CODA is available, a designer could enter a flow diagram into a CASE
system and then invoke automated assistance to generate a concurrent design. Such
automation can capture design decisions and rationale and can maintain traceability
between elements on the flow diagram and components in the design. The CASE tool
might also store designer decisions and reuse them when the design is changed.

11. Acknowledgments
We gratefully acknowledge the financial support provided by the National

Institute of Standards and Technology (NIST), and most particularly James H. Burrows.
Without his support, the work reported in this paper could not have been carried out. In
addition, we appreciate the insightful suggestions from Paul Black and Dolores Wallace,
who provided substantive technical comments on the draft manuscript as part of the
rigorous NIST process for reviewing technical and scientific manuscripts prior to
submitting them for consideration by conferences and journals. We also appreciate the
encouragement provided by David Tennenhouse, who reminded us of our responsibility
to share the results of our work. Finally, if readers find the manuscript to be clear and
interesting, then much of the credit belongs to the anonymous reviewers whose careful
reading and significant suggestions showed us how to improve the paper. Of course, we
take responsibility for any errors or flaws remaining in the paper.

Draft 08/28/00

 42

12. References

[1] Freeman, P. (1980) "The Nature of Design", Tutorial on Software Design Techniques,

(Freeman and Wasserman, editors) IEEE Computer Society, April 1980, pp. 46-53.
[2] Booch, G. (1986) "Object-Oriented Development", IEEE Transactions on Software

Engineering, February 1986, pp. 211-221.
[3] Booch, G. (1991) Object Oriented Design With Applications, Benjamin/Cummings,

Redwood City, California, 1991.
[4] Coad, P. and Yourdon, E. (1991) Object-Oriented Analysis, Yourdon Press,

Englewood Cliffs, New Jersey, 1991.
[5] DeMarco, T. (1978) Structured Analysis and System Specification, Prentice-Hall,

Englewood Cliffs, New Jersey, 1978.
[6] Fowler, M. (1997) UML Distilled, (with Kendall Scott), Addison-Wesley, 1997.
[7] Gomaa, H. (1993) Software Design Methods for Concurrent and Real-Time Systems,

Addision-Wesley Publishing Company, Reading Massachusetts, 1993.
[8] Hatley, D. and Pirbhai, I. Strategies for Real-time System Specification, Dorset

House, New York, 1988.
[9] Jackson, M. (1983) System Development, Prentice-Hall, Englewood Cliffs, NJ, 1983.
[10] Nielsen, K. and Shumate, K. (1987) "Designing Large Real-Time Systems With

Ada", Communications of the ACM, August 1987, pp. 695-715.
[11] Nielsen, K. and Shumate, K. (1988) Designing Large Real-Time Systems With Ada,

McGraw-Hill, New York, 1988.
[12] Rumbaugh, J.; Blaha, M.; Premerlani, W.; Eddy, F.; and Lorensen, W. (1991)

Object-Oriented Modeling and Design, Prentice-Hall, Englewood Cliffs, New
Jersey, 1991.

[13] Shlaer, S. and Mellor, S. J. (1992) Object Lifecycles - Modeling the World in States,
Yourdon Press, Englewood Cliffs, New Jersey, 1992.

[14] Ward, P. and Mellor, S. (1985) Structured Development for Real-time Systems, Four
Volumes, Prentice-Hall, Englewood Cliffs, New Jersey, 1985.

[15] Yourdon, E. and Constantine, L.L. (1979) Structured Design, Prentice-Hall,
Englewood Cliffs, New Jersey, 1979.

[16] Karimi, J. and Konsynski, B. R. (1988) "An Automated Software Design Assistant",
IEEE Transactions on Software Engineering, February 1988, pp. 194-210.

[17] Tsai, J. P. and Ridge, J. C. (1988) "Intelligent Support for Specifications
Transformation", IEEE Software, November 1988, pp. 28-35.

[18] Boloix, G., Sorenson, P. G., and Tremblay, J. P. (1992) "Transformations using a
meta-system approach to software development", Software Engineering Journal,
November 1992, pp. 425-437.

[19] Lor, K. E. and Berry, D. M. (1991) "Automatic Synthesis of SARA Design Models
From Systems Requirements", IEEE Transactions on Software Engineering,
December 1991, pp. 1229-1240.

 [20] Parnas, D. L. (1972) "On the Criteria To Be Used in Decomposing Systems into
Modules", Communications of the ACM, December 1972, pp.1053-1058.

 [21] Mills, K. (1996) Automated Generation of Concurrent Designs For Real-Time
Software, Ph.D. Dissertation, George Mason University, 1996.

Draft 08/28/00

 43

[22] Mills, K. and Gomaa, H. (1998) "A Knowledge-Based Method for Inferring
Semantic Concepts from Graphical Models of Real-time Systems", submitted for
publication.

[23] Fikes, R. and Kehler, T. (1985) "The Role of Frame-Based Representation In
Reasoning", Communications of the ACM, September 1985, Volume 28, Number 9,
pp. 904-920

 [24] Lim, E. and Cherkassky, V. (1992) "Semantic Networks and Associative Databases",
IEEE Expert, August 1992, pp. 31-40.

[25] Genesereth, M. R. and Ginsberg, M. L. (1985) "Logic Programming",
Communications of the ACM, September 1985, Volume 28, Number 9, pp. 933-
941.

[26] Brachman, R. J. and Schmolze, J. G. (1989), "An Overview of the KL-ONE
Knowledge Representation System", in Readings in Artificial Intelligence and
Databases, (J. Mylopoulos and M. L. Brodie, eds.), Morgan Kaufmann Publishers,
Inc., San Francisco, CA. 1989. pp. 207-229.

 [27] Michalski, R. S. (1980), "Pattern Recognition as Rule-Guided Inductive Inference",
IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 2,
Number 4, 1980.

 [28] Hayes-Roth, F. (1985) "Ruled-Based Systems", Communications of the ACM,
September 1985, Volume 28, Number 9, pp. 921-932.

[29] NASA (National Aeronautics and Space Administration). (1993) Software
Technology Branch, CLIPS Reference Manual, Three Volumes, CLIPS Version
6.0, June 2, 1993.

[30] Gomaa, H. (1984) "A Software Design Method for Real Time Systems",
Communications of the ACM, September 1984, pp. 938-949.

[31] Booch, G, Rumbaugh, J., and Jacobson, I. (1998) The Unified Modeling Language
User Guide, Addison Wesley, Reading, MA, 1998.

[32] Douglas, B. P. (1998) Real-Time UML, Addison Wesley, Reading MA, 1998.
[33] Eriksson, H. E., and Penker, M. (1998) UML Toolkit, Wiley Computer Publishing,

1998.
[34] D. Barstow, "Domain-Specific Automatic Programming", IEEE Transactions on

Software Engineering, November 1985, pp. 1321-1336.
[35] D. Barstow, "Automatic Programming for Device-Control Software", in Automating

Software Design, M. R. Lowry and R. D. McCartney (eds.), AAAI Press, Menlo Park,
California, 1991, pp. 123-1140.

[36] E. Kant, F. Daube, W. MacGregor, and J. Wald, "Scientific Programming by
Automated Synthesis", in Automating Software Design, M. R. Lowry and R. D.
McCartney (eds.), AAAI Press, Menlo Park, California, 1991, pp. 141-168.

[37] D. Setliff, "On the Automatic Selection of Data Structure and Algorithms", in
Automating Software Design, M. R. Lowry and R. D. McCartney (eds.), AAAI Press,
Menlo Park, California, 1991, pp. 207-226.

[38] D. R. Smith, "KIDS - A Knowledge-Based Software Development System", in
Automating Software Design, M. R. Lowry and R. D. McCartney (eds.), AAAI Press,
Menlo Park, California, 1991, pp. 483-514.

Draft 08/28/00

 44

[39] D. Marques, G. Dallemagne, G. Klinker, J. McDermott, and D. Tung, "Easy
Programming Empowering People to Build Their Own Applications", IEEE Expert,
June 1992, pp. 16-29.

[40] S. Fickas and R. Helm, "Knowledge Representation and Reasoning in the Design of
Composite Systems", IEEE Transactions on Software Engineering, June 1992, pp. 47-
482.

 [41] S. Fickas and R. Helm, A Transformational Approach to Composite System
Specification, University of Oregon, Technical Report CIS-TR-90-19, November
1990.

[42] G. Fischer and A. Girgensohn, K. Nakakoji, and D. Redmiles, "Supporting Software
Designers with Integrated Domain-Oriented Design Environments", IEEE
Transactions on Software Engineering, June 1992, pp. 511-522.

[43] C. Rich and R. C. Waters, "The Programmer's Apprentice: A Research Overview",
Computer, November 1988, pp. 10-25.

[44] C. Rich and R. C. Waters, "Automatic Programming: Myths and Prospects",
Computer, August 1988, pp. 40-51.

[45] C. Rich and Y. Feldman, "Seven Layers of Knowledge Representation and
Reasoning in Support of Software Development", IEEE Transactions on Software
Engineering, June 1992, pp. 451-469.

[46] R. Waters and Y. Tan, "Toward a Design Apprentice: Supporting Reuse and
Evolution in Software Design", Software Engineering Notes, April 1991, pp. 33-44.

[47] G. Estrin, R. S. Fenchel, R. R. Razouk, and M. K. Vernon, "SARA (System
ARchitects Apprentice): Modeling, Analysis, and Simulation Support for Design of
Concurrent Systems", IEEE Transactions on Software Engineering, February 1986,
pp. 293-311.

